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Combined heat and power (CHP) systems produce electricity and useful heat
from fuel. When power is produced near a building which consumes power, transmission
losses are averted, and heat which is a byproduct of power production may be useful to
the building. That thermal energy can be used for hot water or space heating, among
other applications. This dissertation focuses on CHP systems using natural gas, a
common fuel, and systems serving commercial buildings in the United States.

First, the necessary price difference between purchased electricity and purchased
fuel is analyzed in terms of the efficiencies of system components by comparing CHP
with a conventional separate heat and power (SHP) configuration, where power is
purchased from the electrical grid and heat is provided by a gas boiler. Similarly, the
relationship between CDE due to electricity purchases and due to fuel purchases is
analyzed as well as the relationship between primary energy conversion factors for
electricity and fuel. The primary energy conversion factor indicates the quantity of source

energy necessary to produce the energy purchased at the site.
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Next, greenhouse gas emissions are investigated for a variety of commercial
buildings using CHP or SHP. The relationship between the magnitude of the reduction in
emissions and the parameters of the CHP system is explored. The cost savings and
reduction in primary energy consumption are evaluated for the same buildings.

Finally, a CHP system is analyzed with the addition of a thermal energy storage
(TES) component, which can store excess thermal energy and deliver it later if necessary.
The potential for CHP with TES to reduce cost, emissions, and primary energy
consumption is investigated for a variety of buildings. A case study is developed for one
building for which TES does provide additional benefits over a CHP system alone, and

the requirements for a water tank TES device are examined.
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T
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CHAPTER 1

INTRODUCTION

Combined heat and power (CHP), or cogeneration, is the simultaneous production
of electrical and thermal energy at or near the site of use. CHP systems can reduce the
primary energy needed to provide electrical power and thermal energy to a building by
reducing the amount of heat rejected in power production and by reducing the
transmission and distribution losses from the site of production to the site of use [1]. In
this way, heat which would be waste heat at a central power plant is used to help meet the
building’s thermal energy needs, and the total system efficiency can reach 80% [2] (see

Figure 1.1).

Traditional System CHP System

Power Plant | €3T34,: %8}
CHP

HEAT

Efficiency Efficiency

Figure 1.1  Traditional System versus CHP System [2]
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A CHP system produces electricity and thermal energy from a single fuel source;
while a traditional, or separate heat and power (SHP) system typically purchases
electricity from the grid and provides heat with a boiler. Typical CHP components
include the prime mover, the heat recovery system, and a heating system for the building,

as shown in Figure 1.2.

Recoverad

Heat Heating Heat
System
Waste Heat

i Electricity

Figure 1.2 Components of a CHP system

Natural gas is a fuel commonly used for CHP installations, but any fuel may be
used to provide energy to a prime mover, including coal, oil, biomass or other alternative
fuels. The waste heat from the fuel combustion becomes useful thermal energy, and in the
case of combined cooling, heating, and power (CCHP), or trigeneration, it may also be
used for cooling.

The prime mover typically consists of a power generation unit (PGU) which

produces mechanical energy that is used by a generator to produce electricity [3]. Prime
2
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movers can be combustion turbines, steam turbines, reciprocating engines, diesel engines,
or any device which produces electricity and heat as a byproduct. Fuel cells which
convert chemical energy to electrical energy at high temperatures and have heat available

from the cells can also be used as prime movers for CHP systems [4].

Potential Benefits of Combined Heat and Power

According to the International Energy Agency (IEA) [5], CHP systems can reduce
carbon dioxide emissions (CDE) and decrease the cost of power distribution and
transmission. The amount of reduction in operating cost, CDE, or primary energy
consumption (PEC) depends on geographic location and the operational strategy used for
the system, in addition to the performance of individual CHP components [6, 7, 8].

Additionally, an economic analysis for a CHP system in a particular situation may
show that it is unfavorable economically while favorable environmentally, or vice versa
[1,9, 10]. The particular benefits which are most important to the user must be
determined in order to make a recommendation about whether a CHP system is
appropriate for a given situation.

In addition to reductions in cost, CDE, and PEC, other benefits may be associated
with the use of a CHP system: increased power reliability, improved power quality, and

tax credits or other incentives [11,12, 13].

Economic Benefits

Using a CHP system in place of SHP can result in monetary savings if the cost of
producing electricity and thermal energy with the CHP system is lower than the cost of

purchasing electricity and producing heat with SHP. The benefits of a CHP system for
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use with a particular building depend strongly on the power-to-heat demand ratio of the
building [14] and the price of the fuel and electricity in the location where the system is

installed.

Emissions Benefits

CHP systems may reduce the amount of CDE when the emissions produced by
the CHP system are lower than the emissions produced by purchased electricity and fuel
that would meet the same building’s energy needs [15]. CDE savings can range from 10-
50%, depending on the CHP system and the type of energy production the CHP system
replaces, with the greatest reduction in emissions occurring when CHP replaces

electricity generation from non-renewable sources [16].

Energy Benefits

CHP systems may reduce the total amount of energy input needed to produce the
electricity and heat used by a building [8, 17, 18]. It improves energy efficiency by
capturing heat that would not be used by conventional utility generation, and reduces
demand on the electrical grid [2]. CHP systems with natural gas engines as the prime

mover can reach overall efficiencies of 70-80% [19].

Thermal Energy Storage for Use with Combined Heat and Power

Thermal energy storage (TES) refers to a device or system which can take the
captured waste heat from electricity production which is above the building’s current
demand and store it for future retrieval.

The size of the prime mover determines the amount of thermal energy available

for recovery and therefore is an important factor in not only determining the viability of a

4
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CHP system, but also in determining the possible benefits of using thermal energy
storage with that CHP system. Because thermal energy storage will ideally decrease the
need for additional on-site heat production, there is potential for a CHP system with TES
to reduce operational cost, PEC, and CDE more than a CHP system without TES
available. When TES prevents wasting of heat, which is contrary to the purpose of CHP

[20], it may eliminate the need for an auxiliary boiler in a given building.

Energy Use in Commercial Buildings and Combined Heat and Power in the U.S.

Most commercial buildings use SHP to meet the electrical and thermal demand,
relying on electrical utilities for electricity and natural gas-based heating systems for
space heat and hot water. The commercial sector generated less than 0.05 trillion kWh of
electricity in 2011 compared with 4 trillion kWh generated by the electric power sector
[21], as shown in Figure 1.3. Over all sectors, the use of CHP systems has grown in the
U.S. over the last two decades, as shown in Figure 1.4, but CHP power production was
only 158 billion kWh in 2011, compared to almost 3.8 trillion kWh produced by
electricity-only plants [21]. Although commercial property owners are often unaware of
the potential benefits from CHP systems [5], there is potential for CHP to provide

economic, emissions, and energetic benefits for a range of commercial building types.
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Objectives

The goal of this dissertation is to identify situations in which CHP systems reduce
costs, emissions, and PEC. The following objectives are addressed here in support of this
aim:

e CHAPTER II consists of a literature review to address the current state of
CHP systems analysis for economic, environmental, and energetic
benefits, including CHP systems with TES.

e CHAPTER III provides the development of a spark spread screening
parameter in terms of system component characteristics.

e CHAPTER IV provides the development of analogous emissions spark
spread and primary energy spark spread.

e CHAPTER V presents an environmental evaluation of base-loaded CHP
systems for different commercial building types.

e CHAPTER VI investigates the addition of TES in combination with CHP
and its potential for reducing cost, CDE, and PEC for different

commercial building types.
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CHAPTER II

LITERATURE REVIEW

Economic Analysis

For a CHP system to be considered for any commercial installation, it must be
economically viable. Overall, according to the Combined Heat and Power Partnership of
the U.S. Environmental Protection Agency (EPA) [10], “When heat and power can be
produced on site for less than the cost of power from a utility and fuel for heat (separate
heat and power), then there is a positive payback for the project.” The federal government
provides tax credits and financial incentives for CHP development, although the
investment tax credit for CHP is limited to 10% of expenditures on microturbines with a
cap of $200/kW, or 30% of expenditures on fuel cells with a cap of $3,000/kW [13].
Additional federal, state and local incentives that exist in the U.S. can be found in the
EPA’s Funding Database [22]. The economic benefit of a CHP system is highly
influenced by electricity tariffs, electricity buyback prices, and carbon taxes or carbon
credits designated by the government [23].

The spark spread (SS), or difference between natural gas and electricity prices [7],
has been used as a screening parameter for the economic feasibility of a CHP project [7,
24, 25]. Often the spark spread is discussed as a rule of thumb, or zero order indicator as
to the cost saving potential of a CHP installation. The U.S. Department of Energy

Midwest CHP Application Center suggests that a spark spread difference of
8
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$0.0409/kWh ($12/MMBtu) indicates that a CHP system has the potential for a favorable
payback [7]. However, this only takes into account the price difference between
electricity and gas and does not consider differences in the performance characteristics of
individual CHP systems. Graves et al. [26] developed a more sophisticated method that
incorporates generator heat rate, thermal recovery efficiency, equipment cost, and
acceptable payback period, allowing for a more accurate indicator of CHP viability.

Cardona et al. [27] expressed the minimum spark spread necessary to cover fuel
costs and capital investment in a combined heat, cooling and power (CHCP) plant in
terms of only fuel cost and electrical efficiency of the system. The same authors
separately define a specific version of spark spread, SPy,..s, Which compares the price of
purchased electricity with the cost to provide the same amount of electricity given the
cost of fuel [14]. Again, this accounts for the electricity efficiency of the CHCP system
but does not account for the added benefit due to heat recovery from the prime mover.
Conversely, Hawkes et al. [28] define a different version of the spark spread for CHP
sytems, Scnp, Which uses system efficiencies and only accounts for the heat recovery
advantage of a CHP system.

Cuttica and Haefke [7] suggest a given value for spark spread of 0.0409/kWh
($12/MMBtu) which indicates that CHP has the potential for a favorable payback period.
Comparing the actual spark spread to a given cutoff value is a simple way to indicate
whether CHP has the potential to reduce operating costs; however, it does not consider
any conditions unique to the CHP system and the building where it will be installed.
Several factors will affect the economic viability of a CHP system for a particular

situation: CHP system efficiencies, prime mover size, operational strategy, power-to-heat

9

www.manaraa.com



ratio provided by the CHP and power-to-heat ratio of the building to be served by a CHP
system, and overall magnitude of the energy requirements of the building [12, 29, 30].
The relationship between electrical demand and thermal demand has been emphasized by
researchers [7, 14, 29, 30] as a crucial factor for the suitability of a CHP system.

Many mathematical models exist for analyzing the economic, environmental, and
energy benefits of a CHP system [6, 8, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39], but SS
analysis in terms of component efficiencies provides a simple method to analyze
economic potential with only basic information about the CHP system and the building it
serves. Smith et al. [25] have shown that the required SS may be expressed in terms of
system efficiencies to produce a more accurate indicator for economic analysis, as

described in CHAPTER I11.

Environmental Analysis

In addition to economic concerns, the amount of harmful emissions should also be
considered when determining the benefits associated with a CHP system. Meunier [16]
explained the importance of CO, emission reduction when developing CHP systems in
order to mitigate the negative impact energy production has on the climate.

A CHP project may have a social objective to meet other priorities rather than
cost benefit alone. Tax legislation, environmental regulations, or public enthusiasm for
energy efficient technologies may make CHP systems attractive for reasons other than
cost savings. Both the European Union and United States government bodies have taken
steps to analyze the benefits of CHP and the EU, in particular, has used government
policy in an effort to promote CHP technology [40]. Of 21 countries studied by the IEA,

12 make greater use of CHP than the U.S. does as a percentage of overall electrical
10
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production [5]. The IEA has also identified CHP as part of a strategy to reduce
greenhouse gas emissions [5]. U.S. greenhouse gas emissions are primarily energy-
related CDE, and electric power production is the largest contributor to U.S. emissions
[41].

Although the U.S. has not taken the governmental actions to promote CHP that
are more common in Europe [40], regulating emissions and assigning a market value to
harmful emissions would greatly affect the economic analysis of a CHP system [42]. If a
CHP system reduces CDE but increases cost, the necessary monetary value of carbon
credits can be determined which would offset the cost.

If emission allowances are regulated and assigned a market value, the emission
considerations would also be part of an economic analysis [42]. Mago and Hueffed [43]
evaluated a turbine driven CCHP system for large office buildings under different
operating strategies and analyzed the effect of carbon credits on the system’s economic
performance. They reported that carbon credits can successfully yield financial reward
for reducing carbon emissions. The higher the carbon credit value (in $/metric ton of
carbon equivalent) the larger the cost reduction of the CCHP system operation.

Minciuc et al. [44] pointed out that efficient use of fuel by the CHP system can
lead to reduced CO; emissions. Li et al. [31] reported that the energy savings potential of
a CCHP system is also related to the system efficiencies. Mago and Luck [45] have
shown that the efficiency of the power generation unit is a critical variable which
influences a CHP system’s potential to reduce CO, emissions. Therefore, a variation of
the spark spread using system efficiencies which addresses CDE can also be useful for
analyzing CHP systems, as described in CHAPTER IV.

11
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Energetic Analysis

The primary benefit of a CHP system is the recovery of heat, which allows for
more useful output for a given amount of fuel energy. John [46] asserted that a CHP
system should only be considered if it is optimized to conserve energy. Primary energy
analysis concerns source energy rather than energy used at the site (after energy losses
from production and distribution have already occurred), and high PEC is associated with
increased emissions [47]. Fumo et al. [17] advised that the primary energy savings of a
CHP system must be considered along with the economic analysis.

“The cheapest form of energy is energy not used,” according to Richard A. Muller
[48], and when CHP reduces the amount of primary energy needed to produce heat and
power, a number of additional benefits may follow. The energy saved with CHP can
make the building eligible for LEED points [49] or an Energy Star award [50].

Li et al. [31] reported that the energy savings potential of a CCHP system is
related to the system efficiencies. Therefore, variations of the spark spread which address
emission of pollutants and PEC can also be useful for decision making when analyzing

the potential for the use of a CHP system in a given situation.

Operation and Performance

The sizing of the CHP system, its component efficiencies, and whether it operates
at a partial load are all factors affecting system performance [6, 18, 29,47, 51]. While
other researchers have investigated an optimal strategy for a CHP or CCHP (combined
cooling, heating, and power) system by some form of load-following [9, 39, 52] and
considering partial load operation [36, 53], a CHP system in practice is often operated

steadily at a given base load. In order to avoid excess electricity production, the base load
12
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is usually less than the amount of electricity demanded by the building. One simple
operational strategy, thermal base-loading, involves sizing a CHP system to provide the
majority of the building’s thermal need and only a portion of the building’s electrical
need, so that the remaining electricity needed will be purchased from the grid. The
system then operates at a constant base load, which ensures that the prime mover is
operating at high efficiency. This type of base-loading can provide cost savings while
allowing the CHP system to reach maximum efficiency because both the electrical and
thermal energy produced are used by the building [10].

A CHP system is often sized to provide a base load, and additional electricity
needed can be purchased from the grid [53, 54]. This alleviates the reduced efficiencies
associated with partial load operation [55] and does not require knowledge of the partial
load performance of the power generation unit [29, 56, 57]. Full-load operation is
specifically recommended for gas turbine applications, which are commonly used for

large CHP systems [24].

Thermal Energy Storage

Combined heat and power (CHP) systems can potentially reduce operational cost,
emissions, and PEC associated with power production by capturing the waste heat
associated with production and using it to provide space heating or hot water to a
building, thereby making better use of the fuel energy [58]. One major concern for
implementing CHP systems is a mismatch between the amount of electricity and heat
provided by the CHP system and the amount of electrical energy and thermal energy

required by the building it serves [59]. Often this is due to a low power-to-heat ratio (a
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ratio of the electric load to the thermal load) demanded by the building [14], so that the
excess heat produced by the CHP system may not be useful to the building it serves.

Often, a CHP system operates most efficiently at a constant load; however, the
electrical and thermal energy needs of a commercial building are not constant. If the heat
demanded by the building varies over time, this imbalance may be alleviated when TES
is available. This will allow the system to capture thermal energy when it is not being
used by the building and then deliver it when the building needs more thermal energy
than the CHP system provides. This can allow the CHP system to operate more profitably
and for longer periods of time [60]. Thermal energy storage systems may also be
integrated with district heating networks [61, 62] and used to store energy on a seasonal
basis [63] in order to reduce cost, primary energy, and emissions.

A properly designed TES system will minimize energy losses and result in
reduced energy consumption [64, 65], and may result in significant CDE reduction [60].
Verda and Colella [65] found that a TES system could significantly reduce the size of the
additional boiler needed to meet the building’s thermal energy demand with a sufficiently
large TES tank, 1000 m® of storage volume for a CHP plant modeled in Turin, Italy.

Water storage tanks and ice storage systems are commonly studied TES devices
[23, 54, 60, 66, 67]. Previous studies indicate that use of TES for excess heat produced by
the CHP system can reduce the amount of additional heat required from the boiler,
resulting in reduced CDE [60, 67]. It is also possible for thermal energy storage to help
reduce PEC and operating cost [79]. Only a small thermal storage device is necessary to

see a significant improvement over the situation where no thermal energy is stored [60].
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Although an ice-based thermal energy storage system can be modeled within EnergyPlus
[66], CHP systems are suited to hot thermal energy storage.

Many types of thermal energy storage are available which may store heat as
sensible or latent energy [68, 69], and a water tank is a simple and commonly used form
of TES. The thermal capacity of the TES device rather than the material in the tank is
specified in order to make the analysis generally applicable to alternate forms of TES.
The details of the TES system should be selected based on the necessary storage period
and economic concerns such as projected energy prices, acceptable payback period, and
costs associated with CO, emissions [68, 70]. The appropriate size will also depend on

the characteristics of the thermal storage material and the materials used for the TES

equipment [71].
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CHAPTER III

SPARK SPREAD ANALYSIS BASED ON COMPONENT EFFICIENCIES

CHP systems may be considered for installation if they produce savings over
conventional systems with separate heating and power. For a CHP system with a natural
gas engine or microturbine as the prime mover, the difference between the price of
natural gas and the price of purchased electricity, called spark spread, is an indicator as to
whether a CHP system might be considered or not. For a CHP system to show an
economic advantage over a conventional system, its operating costs must be lower when
providing the same amount of thermal energy and electricity that would have come from
conventional alternatives.

The objective of the spark spread analysis presented in this chapter is to develop a
detailed model, based on the spark spread concept, that compares the electrical energy
and heat energy produced by a CHP system against the same amounts of energy produced
by conventional means, an SHP system. The SHP receives electricity from the grid and
provides additional heat as needed with a natural gas boiler.

This chapter investigates the necessary relationship between the price of fuel and
the price of electricity purchased from a utility in order for a CHP system to be
economically feasible with a reasonable payback period, considering the effects of the
CHP system efficiency. An expression for the spark spread based on the cost of the fuel

and some of the CHP system efficiencies is presented along with an expression for the
16
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payback period for a given capital cost and spark spread. These expressions are used to
determine the minimum spark spread (SSp,in) required for a CHP system to avoid net
operational losses when compared with SHP. Additionally, an expression for calculating
the payback period for a CHP system based on the CHP system capital cost per unit of

power output and fuel cost is presented.

Development of Minimum Spark Spread Expression

The spark spread (SS), or price difference between purchased electricity and fuel,
is a simple indicator as to whether the CHP system is economically viable. The SS
expressed in terms of system efficiencies will represent the minimum spark spread for a
CHP system to show a potential operating cost benefit, and is designated SSpi,. The
actual spark spread, given by the price different between purchased electricity and

purchased fuel at a given location and time is designated SS,.

CHP System Efficiencies

Figure 3.1 illustrates the schematic of the CHP system used to develop the SS
relationship. The CHP system is located near the building to provide heat and electricity.
If a CHP system connects to the local electricity grid, excess electricity may be sold to
the grid, or additional electricity can be bought from the grid if the CHP electricity is less

than the building’s electrical demand [10].
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Figure 3.1  Energy flows and basic components of a CHP system

For the analysis presented in this section, all of the electricity and heat provided
by the CHP is used by the building, which allows the CHP system to run at full
efficiency. Fuel energy, F.,, provided to the CHP system goes to the PGU, which
typically consists of a prime mover and electric generator, or a fuel cell stack and power
converter in the case of a fuel cell CHP system. The prime mover here is assumed to run
on natural gas to simplify the comparison, since natural gas is the fuel associated with
both the CHP and SHP systems.

The PGU which provides electricity, E,g,, to the building and rejects heat, Q).

Some of the heat rejected by the PGU is lost, and some heat is available, Q,,, that can be

18
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recovered by the equipment of the heat recovery system (HRS) to provide heat to the
building, Q.
The electric efficiency of the PGU can be expressed as the ratio of £, output to

Feopp input.

chp 3.1

The fuel thermal energy input can be expressed as:

Fchp = mﬁlel LHVf"el 32

where my,; 1s the mass of fuel used and LHV/,; is the lower heating value of the fuel. The
LHYV of natural gas used in this dissertation is 46,400 kJ/kg [72].

The heat produced by the PGU is given by:

ngu = (1 - 77e,pgu)Fvchp 33

The portion of this heat that is available for the heat recovery system (HRS) can

be expressed as:

Qav =Cte ngu 34

where Cy is the coefficient that accounts for thermal losses [8].
The heat recovered from the CHP system, Q... can be expressed in terms of the

CHP heat recovery system efficiency, #s,cnp, as:

Qrec = Qavﬂhrs,chp 3.5
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Because this analysis assumes that all heat is used by the building, the recovered
heat is the same as the heat provided by the CHP system to the building, Qcnp. The
example models in the next section and in the chapters that follow will deal with
situations where Qe is not necessarily useful to the building.

Using Equations (3.3) through (3.5), the thermal efficiency of the CHP system

can be defined as:

Qch P

= — C (-
F,Chp ﬂhrs,chp te ( ne,pgu) 36

nth,chp =

The total system efficiency (overall efficiency) of the CHP system is the ratio of

useful output, in the form of electricity (£,,,) and heat (Q,g.), to fuel energy input (Fp).

Epgu + Qchp _
F - ne,pgu + 77tl't,chp
chp 3.7

770,chp =

This efficiency is a simple, commonly used descriptor for comparing energy
production with energy consumption which does not address energy quality differences
between electrical and thermal output [73].

When expressed as a rate, the total CHP system efficiency includes the electrical

power output, Wp gu» from the power generation unit and the heat rate of neat useful heat

delivered, Qysefu, divided by the fuel input per unit time, Fp, [73].

_ ngu"‘Quseful 38

No,chp = Fchp
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Cost Ratio and Spark Spread

The difference between the cost of electricity, Cost., and the cost of fuel, Costy, is

the actual spark spread and is defined as [7]:

SS,. = Cost, —Cost, 39

For a particular site, average cost values for electricity and fuel can be determined
by simply dividing the total cost over one year by either the total electricity use for that
year or the total gas use for that year [7].

The cost to operate the CHP system is the cost of fuel multiplied by the amount of

fuel used.

Cost,,, = Cost, F,, 3.10

Only the cost of purchasing fuel is taken into account here; maintenance costs are
not considered.
Using Equation (3.7), F, can be expressed in terms of E,gy, Ocnp, and #,cip as

follows:

E 247 + QC
Cost,,, = Costf{’g—hp]

n(),chp

3.11
In order to compare the operational costs of a CHP system with a SHP system, a

building that has electricity requirement £, and heat requirement Q; is shown in Figure

3.2 (a).
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Figure 3.2 Building energy requirements: (a) Total (b) Divided into constant and
varying portions of loads Ey and Qy

As shown in Figure 3.2 (b), the building’s electrical needs may be divided into
two parts: some base portion of the building’s electricity needs, E*b, will remain constant
throughout the year, while the remaining portion, Ey-E 'y, will vary with time. Likewise, a
base portion of the building’s thermal energy needs, Q’, will remain constant, while the
remaining portion, Qup-Q, will vary with time.

The amount of fuel energy needed to satisfy the building’s thermal demand

without a CHP system present is given by:

r o O
nhs,shp 3.12

where 7,1y 18 the efficiency of the heating system (including the building’s boiler) for
SHP.
It is now assumed that the CHP system provides electricity and heat in the amount

of E"y and Q°5, while operating at full load and maximum efficiency. The varying electric
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load and the varying thermal load required above E *b and Q*b cannot, therefore, be
provided by the CHP system. As shown in Figure 3.3, the CHP system provides Epg, and

Qchp 1n the amount of £ *, and Q", and the remainder is provided by grid electricity and

boiler heat.
Eb 'E‘b
CHP
Qenp = Q' Building

Figure 3.3  Building energy requirements with CHP system

Since the CHP system as described will provide the thermal energy in the amount
of 0", Equation (3.12) is used (with O} = Ocnp) to estimate the fuel energy that a SHP

system would consume in order to supply 0.

F*b _ Qchp

nhs,shp 3.13
The operating cost for the CHP system in Equation (3.11) may now be written in

terms of efficiencies as follows:
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E u F*b ’7 5,5
Cost,,, = Costf[ PE 4 sty

770,chp no,chp

3.14
Similarly to Equation (3.10), the cost to operate the SHP system while serving the

same building is:

Cost,,, = Cost F, +Cost, E}, 315

Again, since E', and O, are defined to be the amounts of electrical and thermal
energy produced by the CHP, they are E,,, and Q., respectively. Making this
substitution, the fuel cost for the building with SHP may be written in terms of E,,, and

QOcnp using Equations (3.13) and (3.15).

chp

Cost,, = Cost, +Cost, E,,,

nhs,shp 3 . 1 6
If the CHP system has the potential for payback due to operating cost savings, the
operating cost must be at least as low as the operating cost of an SHP system. This

meaning Equation (3.17) must be satisfied.

Cost,, — Cost,,, 20 317

Substituting Equations (3.14) and (3.16) into Equation (3.17):

E F
Cost, Qo + Cost, Epgu—Costf[ pgu b nhs’SthZO

ﬂhs,shp 770,L‘hp 77o,chp

3.18

Noting that F, Mhs.snp 18 Qenp here, dividing by Qcsp, and simplifying yields:
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E . E,
Cost, S T +Cost, =2 > () 3.19
nhs,shp Qc

hp no,chp nn,chp

chp

The power-to-heat ratio PHR.;, 1s the proportion of electricity to heat energy
produced by the CHP system [3]. This describes how much electricity is delivered to the
building for each unit of thermal energy delivered to the building. These amounts, given

the assumptions made in this section, are Eg, and Qcpp.

E
PHR, =—""
Qonp 3.20

Gathering cost-related terms on the left hand side of the inequality in Equation

(3.20) and gathering efficiency terms on the right hand side yields:

Cost, 1 1 1 1
> — +—
COStf PHRchp 770 77hs,5hp 770 3 2 1
PHR_;, may be expressed in terms of component efficiencies using Equations

(3.1) and (3.6) as follows:

Me pgu
PHR,, =~
nth,chp 322

Recognizing that when the inequality of Equation (3.21) becomes an inequality,
the operating costs for SHP and CHP are equal, Equations (3.21) and (3.22) can be used
to identify a minimum value for cost ratio, below which the CHP system will cost more

to operate than the SHP system.

CRmin — no,chp_ne,pgu< 1 1 ) + 1 323

Ne,pgu No,chp  Mhs,shp No,chp
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For the CHP system to have the potential for economic savings, the actual ratio of
the cost of purchased electricity to the cost of purchased natural gas must be greater than
the CRyin presented in Equation (3.23). This provides a minimum CR based on system
characteristics. When the actual ratio of electricity cost to fuel cost is below this value,
the CHP system will cost more to operate than SHP.

Since spark spread is defined as a difference in electricity and gas prices rather

than as a ratio, Equation (3.20) can be used with the inequality of Equation (3.19).

Cost, ——L (PHr,, +1)|+(sS +Cost, ) PHR,,, 2 0
nhs,shp na,chp 3 24
Dividing by PHRp,, and simplifying:
8§ 2 Cost, ! b1 + ! -1
. PHRchp no,chp nhs,shp nn,chp 325

Recognizing again that the inequality represents the lower limit for CHP payback,
where operating costs are equal to those of an SHP system, and using Equation (3.22), the
minimum spark spread may be expressed in terms of fuel cost and component

efficiencies.

SSmin _ COStf no,chp - ne,pgu 1 _ 1 + 1 _1
. ne,pgu no,chp ﬂhs,shp no,chp 3 26

The required SS can be calculated from the CR value when either the price of fuel,
Costy, or the price of electricity Cost,, is given. The relationship between these quantities

is shown in Equation (3.27).

26

www.manaraa.com



SS = Cost;(CR — 1) = Cost, (1 -2 3.27

Equation (3.27) applies to both the actual spark spread, SS,., and calculated
minimum spark spread, SS,,,. For situations in which the spark spread more closely
follows the price of electricity [74], it may be desirable to calculate SS,,;, in terms of

Cost. as shown in Equation (3.28):

3.28

Analysis of Savings and Payback Using Spark Spread
Cost Savings

When the cost difference in Equation (3.17) is equal to zero, the CHP system does
not show an operating cost benefit with respect to the SHP system. When the cost
difference is greater than zero, the CHP system can produce £ and Q") with lower
operating cost than the SHP system in terms of fuel and electricity purchases. This
generates economic savings for CHP used in place of SHP.

Using Equations (3.6), (3.10), and (3.16) for the CHP fuel energy, total cost

savings can be expressed as:

1
Cost,,, —Cost,,, = Cost QchPL— -

hs,shp nrh,chp

+CR * PHRcth
3.29

In Equation (3.29) the only term that is not related to the performance of the CHP
system and the prices of fuel and electricity is the efficiency of the SHP heating system,

Nhs,shp- This term is important since a CHP system that is less efficient at producing useful
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heat energy could cost more to operate than a SHP system with a more efficient boiler,
even with a larger spark spread. This situation is possible given that a typical natural gas
fired boiler has about 80% efficiency [73]. On the other hand, a CHP system with s chp
larger than s snp for a corresponding SHP system may be economically viable with a

much smaller spark spread than would otherwise be expected.

Payback Period

The yearly savings can be determined when Q. is the amount of energy
produced in one year, which is also the yearly demand from the building (Q°}) that the
CHP system satisfies.

For any given capital cost (CC) associated with the CHP system, a simple
payback period (PBP), in years, can be determined using the yearly savings obtained

from Equation (3.29) as follows:

cC
Costshp - Costchp 330

PBP =

Likewise, when an acceptable payback period has been previously determined,
the maximum allowable capital cost can be found. Figure 3.4 shows the CC as a function
of the spark spread for different PBP. The results presented in this figure were obtained

using Costy= $0.033/kWh, Qi = 175 MWh (or = O

enp =20 kW), n,=0.75, PHR, = 0.5,
and 7,51, = 0.8. Figure 3.4 illustrates that as the spark spread increases, the allowable CC
also increases because the greater difference between Cost, and Cost,leads to more

savings. This figure also demonstrates that for the same SS, the allowable CC also

increases with the acceptable payback period (Line A-A’ in Figure 5). On the other hand,
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for the same CC, the necessary SS,,;, increases when a faster payback is desired (Line B-
B’ in Figure 3.4). Although the magnitude of the capital cost changes with a 1, 2, or 3
year PBP, the system becomes potentially profitable at a spark spread of $0.0165/kWh

($4.84/MMBtu) in each case, which represents the No Savings Case ( Cost,,, — Cost,,,, =

0). In other words, the CHP does not show an operating cost benefit. A spark spread

below $0.0165/kWh indicates that savings are not possible with a CHP system.

25000 A
= PBP =1 year
====PBP =2 years : v
20000 - | == - PBP=3years : .
¥ : s
15000 -
=
[}
(&}
10000 -
5000 -
O T 1 T T
0.00 0.02 0.04 0.06 0.08 0.10

SS ($/kWh)

Figure 3.4  Capital Cost (CC) as a function of the Spark Spread (SS) with varying
Payback Periods (PBP)

Minimum Spark Spread—Relationship to Component Efficiencies

The SSiin associated with the No Savings Case changes based on the component
efficiencies and fuel or electricity price on which the calculations are based. Figure 3.5

shows the SS for the No-Savings Case as a function of the CHP system efficiency. Setting
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savings equal to zero [Equation (3.29)] allows for determining CR,;,, and the SS can then
be determined from a given Cost,or Cost,. This figure was obtained using Cost,=
$0.033/kWh and # 51, = 0.7 for different CHP system efficiency values. A spark spread
greater than the value on the No Savings Case line will have a favorable payback
(meaning that savings are possible), while a spark spread below this line indicates no
payback potential (savings are not possible). If a CHP system could be designed such that
all the fuel energy was converted to electricity and useful heat (7,.,=1), the No Savings
Case would not require the price of electricity to be higher than the price of fuel (SS,.i, =

0). For all realistic cases, SSyin has some positive value.

0.03
- 8
0.025 5
— 0.02 6 =
= =
= 5 =
= No Savings Case Line s
%, 0.015 =
B8 -4 ?_a',
2 y-
0.01 - Favorable payback potential region 3 4
-2
0.005 -
Unfavorable payback -1
potential region
O T T T T T T T T T T T T T T T T T T T T T T O

0.67 0.70 0.74 0.78 0.82 0.85 0.89 0.93 0.96 1.00

nc,chp

Figure 3.5  Minimum Spark Spread (SS,.») as a function of CHP efficiency (#o,c1p)

Figure 3.6 shows the SS for the No Savings Case as a function of CHP system

efficiency for different nusshp values. Similarly to Figure 3.5, the area under each curve

30

www.manaraa.com



represents conditions where CHP is not economically viable while the area above each
curve represents conditions where CHP may be economically viable. The following
values were used to generate Figure 3.6: Costy = $0.033/kWh, ne peu = 0.25, Cie = 0.9, and
Nirs = 0.7. Figure 3.6 illustrates that as nsshp Increases with respect to 1o chp (While Mars chp
is held constant), a CHP system becomes less likely to be profitable since a much larger

SS would be necessary to produce net savings with a CHP system.

0.045
. =———r1hs = 0.7 12
0.04 _\ — =nhs=038
. = - 1hs=09
_ 003 —_
= g =
e
E 0.025 =
: =
= 0.02 6 &
0.015 4 a
0.01
2
0.005
0 + 0
0.7 0.75 0.8 0.85 0.9 0.95 1

nc,chp

Figure 3.6  Required Spark Spread (SS,.,) as a function of CHP system efficiency
(10,chp) With varying efficiency of the SHP heating system (#,s1p)

Payback Period—Relationship to Component Efficiencies

Equations (3.29) and (3.30) can be used to express the PBP as a function of CC,

Costy, CR, PHR iy, Qcip, Ths,shp> a0d 15, cp as follows:
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ccC

1 1
Cost; Q,, ( -

hs,shp ﬂth,chp

PBP =

+CR * PHRC,WJ
3.31

The power-to-heat ratio can be expressed as power over rate of heat delivery.

/4
PHR,, =—="*
Oeip 3.32

For an operating period (7) of 1 year, E,,, is:

Epeu =t Wy 3.33

Therefore, a new parameter called payback period for a CHP system, PBPcpp, can

be expressed as:

_ CC,,PHR,, 1

PBP
chp t 1 1
- +CR*PHR,, |Cost,

nhs,shp nth,chp

3.34

where CCcyp is the capital cost of the CHP system per kW (CC/W,,, ); t should be in

hours if Costy is given in $/kWh.

Equation (3.34) can be used to determine the PBPcyp when the CHP system cost
per kW and some system efficiencies are known as well as the cost of fuel. All these
parameters are usually known based on information from the CHP system manufacturer
and the location where the system will be installed.

The SS is used as a zero order estimator for CHP systems that does not account
for the cost of the equipment or time in operation, which are key factors for evaluating

the economic feasibility of a CHP project. Equation (3.34) defines a parameter, PBP .,
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which provides information in addition to the SS,,,, since the potential for payback is a
crucial parameter considered by building owners or managers to decide about the
economic feasibility of a project. Even if a required (No Savings Case) SS is calculated
using the equations presented here, based on system characteristics, it only indicates
whether or not savings are possible, while the PBP., provides further information about

the CHP system’s potential to save money over SHP over time.

Impact of Component Efficiencies on the Required Cost Ratio

Because the cost ratio is used to determine SSy,i, and PBP pp, it is beneficial to
understand the effects of changing component efficiencies on the required CR (CRyp).
The calculation of SSp, is based on estimates of a number of variables. It is necessary to
assess the likely impact of changes in some of these variables, as such changes can affect
the SS calculations.

The method developed above is used while taking into account the type of
building and its geographic location, and certain input parameters are varied to determine
their effect on CHP efficiency and required cost ratio, CRyin. The CRyy,in can easily be
used to calculate the required spark spread. The sensitivity of the CHP thermal efficiency,
and therefore the overall efficiency and the CR i, is considered with respect to changes in
the following variables: PGU size relative to building demand, R, (R. = Epe/Ep), PGU
electric efficiency (#.,pq.), and CHP heat recovery system efficiency (#us,cip). It is
assumed that the losses between the prime mover and the HRS are negligible (Cy in
Equation (3.4) is equal to 1).

Two different building types in three U.S. locations with different climate

conditions are analyzed. It is no longer assumed that all of the heat produced by the CHP
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system will be useful to the building. While a CHP system which produces excess
electricity requires that the power be dispersed or sold, if possible, a CHP system which
produces excess heat can reject this thermal energy to the atmosphere.

The heat recovered from the CHP system is entirely used by the building only
when the recovered heat, Oy, 1s less than the required heat, O, (3.35). If the CHP
system produces excess heat, only the amount needed by the building is considered to be

useful heat, Qe (3.36).

Qrec < Qreq then Quseful = Qrec 3.35

Qrec = Qreq then Quseful = Qreq 3.36

The thermal efficiency of the CHP system also depends on the relationship

between Qyec and Q.

Qrec
Qrec < Qreq then nth:ChP = Fehp = (1 - nE,pgu)nhrs,chp 3.37
Qreq
Qrec = Qreq then Nth,chp = 3.38

Fchp

Because CHP total system efficiency itself is a function of the PGU efficiency as
well as the thermal efficiency, these two parts of the total system efficiency are also
investigated separately. Since the cost of purchased electricity and fuel varies by
geographic region, the required spark spread for a given system may indicate favorable
economics for a CHP system in one location while the CHP system shows no potential
for savings in another location. Therefore, the analysis is considered for three different

U.S. locations.
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The sensitivities of the #,cnp, 7,0, and required CR (and thereby SSyin) were
evaluated with respect to three system parameters: Re, ¢ pgu, a0d 75 cnp. TWo building
types with different electric and thermal demand profiles were considered in three
different U.S. cities with different climates. The buildings were representative building
models developed by the Department of Energy [75] for a small office building and a full
service restaurant, and the electrical and thermal demand amounts were taken from
results of EnergyPlus 5.0 simulations. The models used as input for the building
simulations were Commercial Reference Building Models (now called Commercial
Prototype Building Models [76]) for existing buildings constructed after 1980. The cities
chosen for the simulated locations were Houston, TX (warm climate), San Francisco, CA
(temperature beach climate), and Duluth, MN (cold climate).

The yearly electrical and thermal demands as determined by EnergyPlus
simulations are presented in Table 3.1 and Table 3.2 for the two building types
considered in each of 3 cities. The power-to-heat ratio of the building, PHRy, is an

average PHR over the year, given as:

Ep

PHR, = 3.39

req

Table 3.1  Electrical and thermal loads for a small office building in 3 cities

E,(G)) 0.,(G)) PHR,

Houston 356.94 30.62 11.7

San Francisco  283.40 38.56 7.35

Duluth 301.30 174.10 1.73
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Table 3.2  Electrical and thermal loads for a full service restaurant in 3 cities

Eb (GJ) Qreq (GJ) PHRb

Houston 1389.9 1208.9 1.15
San Francisco  1145.7 1429.4 0.802
Duluth 1149.5 2599.1 0.442

The sizing of the PGU relative to the building demand is considered by varying
the fraction R, from 25% to 50%. Although the electricity needs vary based on the time
of year, time of day, climate, and building type, it is assumed that the PGU is sufficiently
small so that the base load provided will be entirely consumed by the building. Next, the
efficiency of the PGU is varied from 15% to 35% while keeping the fraction R, constant
at 0.35. Finally, the efficiency of the CHP heat recovery system is varied from 60% to

80% while keeping R, at 0.35 and 7, g, at 25%.

Effects of PGU Sizing

The numerical results for a small office building with varying PGU sizes as a
fraction of the electrical load in Houston, San Francisco, and Duluth are presented in

Table 3.3. In each case, the efficiency of the PGU is 25%.
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Table 3.3  Small office building with CHP, varying PGU size

Re %;3 Qrec>Qreq Quseful (GJ ) (F'Gc}jp) n th,chp na,chp CR

Houston: 0.25 187 Yes 30.62 357 8.6% 33.6% 3.57
0.30 225 Yes 30.62 428  7.1%  32.1% 3.64

0.35 262 Yes 30.62 500 6.1% 31.1% 3.69

0.40 300 Yes 30.62 571 54% 304% 3.73

0.45 337 Yes 30.62 643 48% 298% 3.76

0.50 375 Yes 30.62 714 43% 293% 3.78

San Francisco: 0.25 149 Yes 38.56 283  13.6% 38.6% 3.32
0.30 179 Yes 38.56 340 11.3% 36.3% 3.43

0.35 208 Yes 38.56 397 9.7%  34.7%  3.51

0.40 268 Yes 38.56 453  8.5%  33.5% 3.58

0.45 298 Yes 38.56 510 7.6% 32.6% 3.62

0.50 3.82 Yes 38.56 567 6.8% 31.8% 3.66

Duluth: 0.25 158 No 158.2 301 52.5% 77.5% 1.38
0.30 190 Yes 174.1 361 482% 73.2% 1.59

0.35 222 Yes 174.1 422  41.3% 66.3% 1.94

0.40 253 Yes 174.1 482  36.1% 61.1% 2.19

0.45 285 Yes 174.1 542 32.1% 57.1% 2.40

0.50 316 Yes 174.1 603 289% 53.9% 2.56

Office Building

The effects of the fraction R, on CHP total efficiency and CRy,i, for the small

office building are illustrated in Figure 3.7 and Figure 3.8.
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Figure 3.7  CHP efficiency for varying R, for a small office building in 3 cities
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Figure 3.8  CR required for varying R, for a small office building in 3 cities

Because the small office building requires much more electrical energy than

thermal energy, the amount of heat produced by the CHP exceeds the heat required in
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almost every case with the PGU efficiency at 25%. The only exception is Duluth, MN,
where the heating load is relatively higher and the PGU provides only 25% of Ey,.

As the fraction of £, provided by CHP increases, the amount of heat produced as
a byproduct of generation also increases. Thus, less of the recovered heat is considered
useful heat, and the thermal efficiency decreases. Since the efficiency of the power
generation unit is taken to be constant and all the electricity produced is assumed to be
used by the building, the CHP efficiency corresponds directly to the thermal efficiency.
For this reason, Duluth, the city with the lowest PHR;, has a notably higher overall
efficiency and requires a lower CR, meaning a smaller difference between electricity and
fuel prices is necessary to save money in Duluth. Its PHR; corresponds more closely to
the output of the CHP system and therefore the energy produced by the CHP is more
likely to be used. Houston, with the lowest PHR;, shows low overall CHP system
efficiency and would require the price of electricity to be almost 4 times the price of fuel

for a CHP system to have any potential to save money.

Restaurant

The results for a full service restaurant in Houston, San Francisco, and Duluth are

presented in Table 3.4. In each case, the efficiency of the PGU is 25%.
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Table 3.4  Full service restaurant with CHP, varying PGU size

Re Qrec Quse ul F, CHP
(G J) Qrec > Qreq ( G Jf) (G J) Nin Ncap CR
Houston: 0.25 729.7 No 729.7 1390 52.5% 77.5% 1.375
0.30 875.6 No 875.6 1668 52.5% 77.5% 1375
0.35 1022 No 1022 1946 52.5% 77.5% 1.375
0.40 1168 No 1168 2224  52.5% 77.5% 1.375
0.45 1313 Yes 1209 2502 483% 733% 1.584
0.50 1459 Yes 1209 2780 43.5% 68.5% 1.826

San Francisco: 0.25 601.5 No 601.5 1146 52.5% 77.5% 1.375
0.30 721.8 No 721.8 1375  52.5% 77.5% 1.375

0.35 842.1 No 842.1 1604 52.5% 77.5% 1.375
0.40 962.4 No 962.4 1833 52.5% 77.5% 1.375
0.45 1083 No 1083 2062 52.5% 77.5% 1.375
0.50 1203 No 1203 2291  52.5%  T77.5% 1.375

Duluth: 0.25 603.5 No 603.5 1150 52.5% 77.5% 1375
0.30 724.2 No 7242 1379 52.5% 77.5% 1375

0.35 844.9 No 8449 1609 52.5% T77.5% 1.375
0.40 965.6 No 965.6 1839 52.5% 77.5% 1.375
0.45 1086 No 1086 2069 52.5% 77.5% 1.375
0.50 1207 No 1207 2299 52.5% 77.5% 1.375

The effects of the fraction R, on CHP efficiency and minimum CR for the full

service restaurant are illustrated in Figure 3.9 and Figure 3.10.
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Figure 3.9  CHP efficiency for varying R, for a full service restaurant in 3 cities
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Figure 3.10 CR required for varying R, for a full service restaurant building in 3 cities

The restaurant demands a much higher portion of its energy requirements as
thermal energy than does the office building. Therefore, Q.. does not exceed O, in most
cases. The exceptions are in Houston, which requires the lowest heating load, with the

CHP system providing a greater portion of Ej. Because #,,.;, increases with increasing
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Nu,chp, the efficiency of the CHP system reaches a maximum when 1 cnp 1S maximum,
meaning that all of Q.. is useful heat. With the CHP system functioning at maximum
efficiency, the required CRy;, does not change. In the instances where Q,.. does exceed
Oreq, the CR,,in 1s greater because some of the thermal energy from the CHP is not used
by the building, and therefore more fuel energy is wasted.

The building’s PHR;, does not have an effect for smaller R, values because the
restaurant has a greater need for thermal energy and therefore all the heat produced by the
CHP can be used in most cases. Therefore #, cx, and CR,,;, are calculated in the same way
as the previous section, where geographic location was not taken into account. When R,
1s greater than 0.4, Houston is an exception because the CHP system produces excess

heat, causing #, i, to decrease and CR,i, to increase.

Effects of PGU Efficiency

The results for a small office building in Houston, San Francisco, and Duluth with
varying efficiency of the PGU are presented in Table 3.5. In each case, R, is held constant

at 0.35.
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Table 3.5  Small office building with CHP, varying PGU efficiency

Tpgu %}C) Qrec>Qreq Quseful (GJ ) fé?; Nuh Hcup CR
Houston: 0.15 4956 Yes 30.62 833 37%  18.7% 6.36
0.20 34938 Yes 30.62 625 49%  24.9% 4.69
025 2624 Yes 30.62 500 6.1% 31.1% 3.69
030 204.1 Yes 30.62 416 7.4%  37.4% 3.03
035 1624 Yes 30.62 357 8.6% 43.6% 2.55
San Francisco: 0.15 393.5 Yes 38.56 661 58% 20.8% 6.18
020 277.7 Yes 38.56 496 7.8%  27.8% 451
0.25 2083 Yes 38.56 397 9.7%  34.7% 3.51
030 162.0 Yes 38.56 331 11.7% 41.7% 2.85
035 1289 Yes 38.56 283  13.6% 48.6% 2.37
Duluth: 0.15 41823 Yes 174.1 703 24.8% 39.8% 4.60
020 2953 Yes 174.1 527 33.0% 53.0% 2.94
0.25 2215 Yes 174.1 422 41.3% 66.3% 1.94
030 172.2 No 172.2 352 49.0% 79.0% 1.29
035 137.1 No 137.1 301  45.5% 80.5% 1.23

Office Building

The effects of the PGU efficiency on CHP efficiency and minimum CR for the

small office building are illustrated in Figure 3.11 and Figure 3.12.

43

www.manharaa.com




ssssees HOUSION == =m San Francisco s s Duluth

0.9

0.8 - —

0.7 4 -
0.6 -~

0.5 -

n - e
o0.ehp 0.4 - - e

0.3 - =TT
0.2 =

0.1

0.1 015 0.2 0.25 0.3 0.35 0.4

Figure 3.11 CHP efficiency for varying ne e for a small office building in 3 cities

------- Houston == == SanFrancisco e = Duluth |
7
6 "',,‘

%,
5 N,
\ ) _'.‘
4 ~ .:;-;::"
Cnﬂfﬂ \n ﬂhﬁ"‘ ey
3 ~ St
- H

2 S —

0.1 0.15 0.2 025 0.3 0.35 0.4

'Il:..r.l}-

Figure 3.12 CR required for varying 1 pgu for a small office building in 3 cities

Again, the amount of heat produced by the CHP exceeds the amount of heat
required in most cases with the PGU providing 35% of the load. When PGU efficiency is
low and heat requirements are low, as is the case with Houston where 7,5, = 0.15, little

of the excess heat is useful heat, and this results in low overall CHP efficiency and high
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CRuin. As the PGU efficiency increases, the amount of heat produced as a byproduct of

generation decreases because more fuel energy is converted to electrical energy.

When Q.. is greater than Qyeq, 7 cnp INCreases as 7. g, increases. However, when

Orec 18 less than Oy, as in Duluth with #, e, > 30%, 7, decreases with increasing 7, e

because more fuel is being converted to electricity and less fuel energy is then used to

meet the thermal energy demand.

Restaurant

The results for a full service restaurant in Houston, San Francisco, and Duluth

with varying efficiency of the PGU are presented in Table 3.6. In each case, R, is held

constant at 0.35.

Table 3.6  Full service restaurant with CHP, varying PGU efficiency

77pgu (Qéja Qrec>Qreq Quseﬁxl (GJ ) ](:é?; Nin HcHp CR

Houston: 0.15 1930 Yes 1209 3243  37.3% 52.3% 3.56
020 1362 Yes 1209 2432  49.7% 69.7% 1.89

0.25 1022 No 1022 1946 52.5% 77.5% 1.36

030 794.6 No 794.6 1622 49.0% 79.0% 1.29

035 6324 No 632.4 1390 45.5% 80.5% 1.23

San Francisco: 0.15 1591 Yes 1429 2673  53.5% 68.5% 2.21
020 1123 No 1123 2005 56.0% 76.0% 1.50

0.25 842.1 No 842.1 1604 52.5% 77.5% 1.38

0.30 655.0 No 655.0 1337  49.0% 79.0% 1.29

035 5213 No 521.3 1146 45.5% 80.5% 1.23

Duluth: 0.15 1596 No 1596 2682  T74.5% T74.5% 1.71
020 1127 No 1127 2012  76.0% 76.0% 1.50

0.25 8449 No 844.9 1609 52.5% 77.5% 1.38

0.30 657.1 No 657.1 1341 49.0% 79.0% 1.29

0.35 523.0 No 523.0 1150 455% 80.5% 1.23
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The effects of the PGU efficiency on overall CHP efficiency and CR,,;, for the full

service restaurant are illustrated in Figure 3.13 and Figure 3.14.
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Figure 3.13 CHP efficiency for varying nye. for a full service restaurant in 3 cities
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Figure 3.14  CR required for varying nepgu for a full service restaurant in 3 cities
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Orec does not exceed Q,., in most cases for the restaurant, except in the warm
climates with low PGU efficiency. The thermal efficiency of the CHP system reaches a
maximum when 7 g, s such that Q... = O,4, but #, s, continues to increase and CRpin
continues to decrease with increasing 7, ,q,. In the cases when Q.. does exceed Oy, the
CRyin increases dramatically when 7., ., decreases because more of the thermal energy

from the fuel is not used.

Effects of Heat Recovery System Efficiency

The results for a small office building in Houston, San Francisco, and Duluth with
varying efficiency of the PGU are presented in Table 3.7. In each case, 7, ;g 1s 0.25 and

R, 1s 0.35.

Table 3.7  Small office building with CHP, varying CHP heat recovery efficiency

Qrec Quseﬁd F CHP
ﬂchr (GJ) Qrec> Qreq (GJ) (GJ) 77[]1 ”CHP CR
Houston: 0.6 224.9 Yes 30.62 4997 6.1% 31.1% 3.69
0.65 243.6 Yes 30,62  499.7 6.1% 31.1% 3.69

0.70 2624 Yes 30,62 4997 6.1% 31.1% 3.69
0.75  281.1 Yes 30.62 4997 6.1% 31.1% 3.69
0.80  299.8 Yes 30,62 499.7 6.1% 31.1% 3.69

San Francisco: 0.6 178.5 Yes 38.56 396.8  9.7% 34.7% 3.51
0.65 193.4 Yes 38.56 396.8 9.7%  34.7% 3.51
0.70 208.3 Yes 38.56 396.8 9.7%  34.7% 3.51
0.75 223.2 Yes 38.56 396.8 9.7%  34.7% 3.51
0.80 238.1 Yes 38.56 396.8 9.7% 34.7% 3.51

Duluth: 0.6 189.8 Yes 174.1 4218 413% 66.3% 1.94
0.65 205.6 Yes 1741 4218 413% 66.3% 1.94
0.70 2215 Yes 174.1  421.8 413% 66.3% 1.94

0.75 2373 Yes 174.1 4218 413% 66.3% 1.94
0.80  253.1 Yes 174.1 4218 413% 66.3% 1.94
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Office Building

The effects of the CHP heat recovery system efficiency on CHP overall efficiency

and CR,,;, for the small office building are illustrated in Figure 3.15 and Figure 3.16.
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Figure 3.15 CHP efficiency for varying nueschp for a small office building in 3 cities
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Figure 3.16 CR required for varying N chp for a small office building in 3 cities
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The amount of heat produced by the CHP exceeds the amount of heat required in
each case above for the small office building. As the efficiency of the CHP’s heat
recovery system increases, the amount of heat recovered increases, but since this heat is
in excess of the thermal demand, values for #, cip, #o,chp, and CRin remain the same
(Qusefin Temains constant).

The results for a small office building in Houston, San Francisco, and Duluth with
varying efficiency of the PGU are presented in Table 3.8. In each case, #, g, 15 0.25 and

R. 15 0.35.

Table 3.8  Full service restaurant with CHP, varying CHP heat recovery efficiency

Nehr %}3 Qrec>Qreq %é}f;l féljlg) Nin NcHP CR

Houston: 0.6 875.6 No 875.6 1946 45.0% 70.0% 1.75
0.65 948.6 No 948.6 1946 48.8% 73.8% 1.56

0.70 1022 No 1022 1946 52.5% 77.5% 1.38

0.75 1095 No 1095 1946 56.3% 81.3% 1.19

0.80 1168 No 1168 1946 60.0% 85.0% 1.00

San Francisco: 0.6 721.8 No 721.8 1604 45.0% 70.0% 1.75
0.65 781.9 No 781.9 1604 48.8% 73.8% 1.56

0.70 842.1 No 842.1 1604 52.5% 77.5% 1.38

0.75 902.2 No 902.2 1604 56.3% 81.3% 1.19

0.80 962.4 No 962.4 1604 60.0% 85.0% 1.00

Duluth: 0.6 724.4 No 724.4 1609 45.0% 70.0% 1.75
0.65 784.6 No 784.6 1609 48.8% 73.8% 1.56

0.70 844.9 No 844.9 1609 52.5% 77.5% 1.38

0.75 905.3 No 905.3 1609 56.3% 81.3% 1.19

0.80 965.6 No 965.6 1609 60.0% 85.0% 1.00
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Restaurant

The effects of the CHP heat recovery system efficiency on CHP overall efficiency
and minimum CR for the full service restaurant are illustrated in Figure 3.17 and Figure

3.18.
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Figure 3.17 CHP efficiency for varying n pg. for a full service restaurant in 3 cities
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For the restaurant, which has a lower PHR), the amount of heat recovered is never
in excess of the heating demand. As the efficiency of the CHP’s heat recovery system
increases, the amount of heat recovered increases and therefore 7, .5, increases.

Correspondingly, 7, cx, increases and CR,,;, becomes less with increasing Qye..

Cost Spark Spread: Summary and Conclusions
Mathematical Models

A detailed model, based on the spark spread, that compares the electrical energy
and heat energy produced by a CHP system against the same amounts of energy produced
by a traditional, or separate heating and power (SHP) system is presented in this chapter.
It was assumed that the CHP system operates at full load and full efficiency and that the
building uses all energy produced by the CHP system. The energy consumption amounts
which were not met by the CHP system are the same for both systems (CHP and SHP) so
they do not contribute to the comparison.

An expression for the spark spread based on the cost of the fuel and some CHP
system efficiencies, as well as an expression for the payback period with a given capital
cost and spark spread, is presented in this chapter. The ratio of electricity cost to fuel cost
was found to be a contributing parameter for both. The developed expressions can be
used to determine the required spark spread, SSi,, which gives a baseline above which a
CHP system could produce net operational savings over the SHP. SS,;;, is expressed in
terms of the performance of system components.

Although a spark spread of $0.0409/kWh is typically used to indicate the potential
for favorable payback of a CHP system, the analysis presented in this chapter shows that

the required spark spread depends on the components, the desired payback period or
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capital cost, and the magnitude of the price of fuel, or of the price of electricity. A CHP
system may be economically viable with a spark spread much less than $0.0409/kWh in
some cases, and in others a spark spread even greater than $0.0409/kWh may not result in
a favorable payback. The required SS (No Savings Case) strongly depends on the
efficiency of the SHP heating system, the efficiency of the CHP system, and the
relationship between electricity output and heat output (or, PGU efficiency relative to
CHP thermal efficiency). Larger spark spreads are necessary in order to guarantee:
shorter payback periods, lower CHP efficiencies, higher SHP heating system efficiencies,
and higher fuel prices.

The introduced PBPcpp is a simple indicator of the economic viability of a CHP
system which takes into account the CHP and SHP thermal efficiencies, power-to-heat
ratio of the CHP system, capital cost of the CHP system, and the cost of fuel and its
relationship to the cost of electricity. Rather than specifying a spark spread which may or
may not be met in order to indicate economic viability of a CHP system, the PBPcyp

indicates if net savings over an SHP system could be achieved.

Computational Examples

The analysis leading to SSyin made the assumption that all electricity and thermal
energy produced by the CHP would be used by the building. Varying levels of electrical
and thermal demand would not affect this analysis and for this reason, different building
types and locations were not considered.

For cases where Q.. < Oy, the recovered heat is entirely used and the results
obtained are identical to those from the earlier model. Under those conditions, the sizing

of the PGU with respect to the building demand has no effect on overall CHP efficiency
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or on the CR or SS§ required. Increasing 7., g, OF Increasing #,cnp in this case results in a
linear increase in 7, and a linear decrease in CRy;n.

Since an installed system may produce excess energy, the case where excess heat
production occurs was considered. This analysis shows for cases where Q,ec > Oy, the
needs of the building and the sizing of the CHP system play an important role in the
system efficiencies (and therefore SSy,i, and CRpin) because some of the energy produced
may not be useful to the building under analysis.

When excess heat is recovered from the CHP system, a smaller PGU size will
result in larger #, 4, and smaller required CR. The effect of PGU sizing on #, cx, and CR
1s more pronounced at low R.. The overall CHP efficiency decreases quickly when the
power-to-heat ratio provided by the CHP system decreases below the PHR), for that
particular location and building type. Increasing #. e, in this case results in a steep linear
increase in 7, .4, until the point where Q..=0y.;, Where the increase becomes less steep.
This also results in a decrease in required CR, with a much more pronounced effect in
Houston, a hot climate. Increasing #,,cx, in this case does not affect #,, ., or the required
CR because the heat produced is more than enough to meet the building’s thermal energy
requirement.

Comparing results between the three cities, it is obvious in each case that Duluth,
which has much colder weather, produces much higher CHP efficiencies because the heat
recovered is all, or mostly, useful heat. The restaurant shows much more favorable results
because the disparity between the power and heat provided by the CHP system and the

PHR,y, of the building is much smaller than for the office building.
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The electrical load is relatively much larger than the thermal load in the warmer
climates, resulting in a larger Q... because the recovered heat is directly proportional to
the amount of electricity produced when 7,4, 1s assumed constant. However, in a
warmer climate zone, less space heating is needed throughout the year and therefore the
amount of heat recovered becomes much more likely to exceed the amount of heat that
can be used. For the office building, which has a large PHR}, the CR,,;, required for a
CHP system to show a potential cost benefit is prohibitively high for Houston and San
Francisco.

Because CHP replaces purchased electricity with electricity generated from fuel
on-site, the larger the ratio of Cost. to Costs the more advantageous a CHP system
becomes over an SHP system. CRpiy is closely linked with #, ¢, with highly efficient
CHP systems having a lower CR iy, indicating more potential for cost benefit.

While the results shown consider the energy needs of a building over the entire
year at once, the analysis could be conducted in the same way on a monthly basis, since
climate conditions change throughout the year, or on an hourly basis if this level of data
is available for the building under study.

In general, the full service restaurant model is more suitable for CHP due to its
high thermal demand, which corresponds to lower PHR;, values and allows for more of
the heat available from the CHP system to be used by the building.

Duluth, the coldest climate used for this analysis, showed the most potential for
cost savings with a CHP system. The buildings located in Duluth need more heat than

those in milder climates, and therefore the power-to-heat ratio provided by the CHP
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system is closer to PHR). This method may be used to analyze a wider variety of building

types in any climate zone of interest.
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CHAPTER IV

EMISSIONS SPARK SPREAD AND PRIMARY ENERGY SPARK SPREAD

Costs, CDE, and PEC for CHP and SHP systems will vary with the location
where the system is installed. The amount of harmful emissions associated with
purchased electricity varies with the fuel mix used by the utility which produces that
power [77]. The energy consumed at the site is also related to the energy consumed at the
utility by a local source-site ratio [8].

This chapter presents an emissions spark spread (ESS) and a primary energy spark
spread (PESS) as environmental and energy screening parameters for CHP systems. The
objective of this work is to provide simple screening tools, using the method shown in
CHAPTER III, which indicate CHP’s potential to reduce CDE and to reduce PEC. Then,
factors are investigated which influence the amount of emissions and energy reduction
possible with a CHP system rather than a conventional SHP system.

In addition to the SS, its variations which address CDE and PEC for different
locations are needed if environmental and energetic considerations are important to
determine the feasibility of a CHP system. The ESS and PESS are compared for cities in
16 climate zones, which represent divisions of the 8 basic U.S. climate zones shown in

Figure 4.1.
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Development of New Spark Spread Expressions for Emissions and Energy

Emissions Spark Spread

Emissions Spark Spread can be defined as:

ESS = EEF — FEF 41

where EEF is the electricity emissions factor and FEF is the fuel emissions factor. Fumo
et al. [9] define EEF as “the quantity of emission of a pollutant associated with the site
electric energy consumed” and FEF as “the quantity of emission of a pollutant associated
with the site fuel energy consumed”. This is a global assessment of pollutant which does
not take into account the local impact of pollutants emitted from a CHP system, which is
a traditional method of comparing CHP and SHP [36].

The CDE from the CHP system operation as a function of the quantity of fuel

consumed can be expressed as:
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Emissions,,, = F,,, FEF 49

This is analogous to Equation (3.10).
Similarly, the CDE from the SHP system operation of the reference building as a

function of the quantities of fuel and electricity consumed at the site is:

Emissions,,, = E. EEF + F FEF 43

This is analogous to Equation (3.15). Because only the constant portion of
electrical and thermal energy than the CHP system can provide is considered in this
comparison, here £, = E,q, as in CHAPTER I1I, and F}, can also be defined in terms of
the heat provided by the CHP system if it is assumed that all of this heat is used by the

building.

Emissions ;,, = E, EEF + %FEF

Mhs snp 4.4
A favorable CDE potential, similar to a favorable payback potential, is the
opportunity for a CHP system to reduce emission over time (rather than reducing
monetary expenditures). For the CHP system to have a favorable CDE potential, the total
emissions resulting from the CHP system operation must not be larger than that resulting
from the operation of the SHP system; otherwise the CHP systems produces more CDE

than the reference system.

Emissions ;,, — Emissions,,,, > 0 45

Using the analysis method of CHAPTER III, Equation (3.23) can be modified to

account for emissions by changing CR,,;, to a minimum emissions ratio, ER,,;;, which
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represents the ratio of CDE associated with conventional electricity production to CDE
associated with on-site fuel use. The emissions ratio can be solved for in the same manner
as CR,in, where the resulting ER,,;, corresponds to the break-even conditions, which exist

when the CHP system and SHP system produce equal amounts of emissions [78]:

B SR U U P
- PHRchp no,chp nhs,shp nn,chp 46

For a CHP system the potential to reduce CDE, ESS should satisfy the inequality:

ESS, > FEF(ER_, —1) 47

where ESS is the difference in EEF and FEF values obtained for a given situation. EEF
values for purchased electricity will vary based on the fuel mix used to generate that
electricity in the eGRID subregion corresponding to the building’s location [79, 80]. FEF
values account for direct greenhouse gas emissions and are unique to the fuel used
according to its heating value and carbon content [79, 81].

The ESS, values for the different climate conditions are presented in Table 4.1.
This table was calculated using a nationwide average FEF value of 181 kg CO,/MWh

given by the EPA [79] for natural gas.

59

www.manaraa.com



Table 4.1

ESS for the 16 U.S. cities evaluated in this investigation

ESS..  (kg/MWh)
Climate Zone  City EEF (kg/MWh)"
Eq. (B6)
1A Miami, FL 598 417
2A Houston, TX 601 420
2B Phoenix, AZ 595 414
3A Atlanta, GA 676 495
3B-Coast Los Angeles, CA 328 147
3B Las Vegas, NV 595 414
3C San Francisco, CA 328 147
4A Baltimore, MD 517 336
4B Albuquerque, NM 596 414
4C Seattle, WA 409 228
5A Chicago, IL 698 517
5B Boulder, CO 854 673
6A Minneapolis, MN 826 645
6B Helena, MT 409 228
7A Duluth, MN 826 645
8A Fairbanks, AK 559 378

*Values taken in October 2010

Primary Energy Spark Spread

Primary Energy Spark Spread, PESS, can be defined similarly to ESS as

PESS = ECF - FCF

4.8

where ECF is the electricity conversion factor and FCF is the fuel energy conversion

factor. Fumo et al. [8] define ECF as “the factor used to express site electric energy in

terms of total equivalent primary source energy” and FCF as “the factor used to express

site fuel energy in terms of total equivalent primary source energy.” These factors

account for losses that occur in producing and transporting energy in the form of either

electricity or fuel.
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Likewise, the primary energy used by the CHP system must be at least as low as
the primary energy used by an SHP system; otherwise the CHP systems consumes more

primary energy than the reference system.

PEC,, —PEC,, >0 49

The primary energy ratio can be solved for in the same manner as CR i, and
ERmin, Where the resulting PER i, corresponds to the break-even conditions, where the
the CHP system and the SHP system are responsible for the consumption of equal

amounts of primary energy:

PR, =L N SR
PHRchp no,chp nhs,shp na,chp 410

For a CHP system to have the potential to reduce PEC, PESS should satisfy the

inequality:

PESS > FCF(PER . —1) 4.11

where PESS is the difference in ECF and FCF values obtained for a given situation. ECF
values for purchased electricity account for losses associated with the conversion of a
fuel to electricity, and transmission and distribution losses on the way to the site, and will
also vary based on the fuel mixed used for electrical generation in the region [80, 82].
FCF values for natural gas account for pipeline transmission and distribution losses on
the way to the site. The FCF value, provided by the EPA [83], is unique to the fuel used

and will vary slightly over time. PER, again, represents the ratio of the source-to-site
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conversion factor for electricity, ECF, to the source-to-site conversion factor for fuel,
FCF.

The PESS values for the different climate conditions are presented in Table 4.2.
This table was calculated using the FCF nationwide average value of 1.047 given by the

EPA [83] for natural gas.

Table 4.2  PESS for the 16 U.S. cities investigated in this evaluation

Climate Zone City ECF EI;S(S;%—)
1A Miami, FL 3.7 2.65
2A Houston, TX 3.7 2.65
2B Phoenix, AZ 2.9 1.85
3A Atlanta, GA 3.4 2.35
3B-Coast Los Angeles, CA 2.2 1.15
3B Las Vegas, NV 3.1 2.05
3C San Francisco, CA 2.2 1.15
4A Baltimore, MD 35 2.45
4B Albuquerque, NM 3.7 2.65
4C Seattle, WA 1.5 0.453
5A Chicago, IL 3.6 2.55
5B Boulder, CO 34 2.35
6A Minneapolis, MN 3.5 2.45
6B Helena, MT 2 0.95
7A Duluth, MN 3.5 2.45
8A Fairbanks, AK 2.7 1.65

Results and Discussion of the Emissions Spark Spread and Primary Energy Spark
Spread

To illustrate the use of ESS and PESS, three cases were analyzed for different
overall CHP total system efficiencies (60%, 70%, and 80%) as presented in Table 4.3.
These CHP system efficiencies were selected to represent a range of efficiencies that
could be achieved using the same prime mover (1 peu = constant) with varying amounts

of useful thermal energy (nm,chp ranging from 0.35 to 0.55).
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Table 4.3  System parameters for the three cases analyzed in this investigation

Parameter Case A Case B Case C
Mo .chp 0.6 0.7 0.8

e, pgu 0.25 0.25 0.25

T ih,chp 0.35 0.45 0.55
PHR.;,, 0.71 0.56 0.45
Mhs shp 0.8 0.8 0.8

Using Equation (4.7) and Equation (4.11) the minimum ESS and minimum PESS

for the three analyzed cases can be determined. These values are presented in Table 4.4.

Table 4.4  ESSin and PESSi, for the three cases analyzed in this investigation

Parameter Case A Case B Case C

ESSynin (kg/MWh) 226.3 1358 458
PESS, , (unitless, or MWh/MWh)  1.309 0.785  0.262

The ESS..: may be calculated using the FEF (181 kg/MWh) and the EEF for the
location of interest, given in Table 4.1. Similarly, the PESS,.; may be calculated using the
FCF (1.047) and the ECF for the location of interest given in Table 4.2. After the actual
ESS is known, the ratio of ESS to ESS,.;» can be calculated to illustrate the potential
environmental advantage of the CHP system. When this ratio is greater than 1, the CHP
system shows potential to reduce CDE compared to the SHP system, but when the ratio is
less than 1, the CHP system will cause more CDE. The higher the ratio ESS/ESS,in, the
greater the potential for a CHP system to reduce CDE in that climate zone, using the
nationwide average fuel emissions factor. Similarly, the ratio of PESS to PESS,,;» can be
calculated to illustrate the advantage of the CHP system in terms of primary energy.
When this ratio is greater than 1, the CHP system shows potential to reduce PEC
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compared to the SHP system, but when the ratio is less than 1, the CHP system will
consume more primary energy. The higher this ratio is, the greater the potential for a
CHP system to reduce PEC in that climate zone, using the nationwide average fuel
conversion factor.

Table 4.5 presents the EES,./ESSqin for the evaluated cities for the three different
cases analyzed. In addition, the ESS,./ESSin ratios are presented in Figure 4.2 to allow
for visual comparison between the cities. The CHP system shows potential to reduce
CDE in all the evaluated cities for all cases except for Case A in the cities of Los Angeles
and San Francisco. For Case A, these two cities give a ratio smaller than 1, which means
that for this case, a CHP system is not favorable in terms of emissions. The ratio for these
two cities is close to 1 for Case B. Therefore, it can be concluded that for the evaluated
cases, a CHP system has to operate with an efficiency above 70% to be able to reduce
CDE with respect to the reference case. The largest reductions would take place in
Boulder, Minneapolis, and Duluth. The least improvement would take place Los Angeles

and San Francisco due to the relatively clean production of electricity in California.
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Table 4.5  ESS,./ESSmin Ratios for 16 U.S. Cities Analyzed in This Investigation

Climate Zone City ESS,c/ESS pin ESS,c/ESSin ESS./ESS pin

(Case A) (Case B) (Case C)
1A Miami, FL 1.84 3.07 9.22
2A Houston, TX 1.86 3.09 9.28
2B Phoenix, AZ 1.83 3.05 9.15
3A Atlanta, GA 2.19 3.65 10.94
3B-Coast Los Angeles, CA [0:65 " 1.08 3.25
3B Las Vegas, NV 1.83 3.05 9.15
3C San Francisco, CA _ 1.08 3.25
4A Baltimore, MD 1.49 2.48 7.43
4B Albuquerque, NM  1.83 3.05 9.15
4C Seattle, WA 1.01 1.68 5.04
S5A Chicago, IL 2.29 3.81 11.43
5B Boulder, CO 2.97 4.96 14.87
6A Minneapolis, MN  2.85 4.75 14.25
6B Helena, MT 1.01 1.68 5.04
TA Duluth, MN 2.85 4.75 14.25
8A Fairbanks, AK 1.67 2.78 8.35
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Figure 4.2  ESS/ESSpin ratios for 16 U.S. cities analyzed in this investigation

Since ESS is the difference between the local electricity emissions factor and a
nationwide average fuel emissions factor, the characteristics of the fuel mix in the local
region are a critical factor for determining whether a CHP system can reduce emissions in
that location. The fuel mix used to produce electricity determines the amount of CO, to
be released as a result of electricity production. The amount of carbon in the fuel mix has
a high impact on the CDE for that region. For example, Boulder, Minneapolis, and
Duluth have the highest EEF's, from 826 to 854 kg CO,/MWh [77]. Therefore, the high
level of pollutants caused by conventional electricity production in these areas makes the

use of a CHP system especially attractive. On the other hand, Los Angeles and San
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Francisco have a relatively low EEF of 328 kg CO,/MWh, and therefore the use of a
CHP system is not beneficial for some cases.

Some cities, such as Los Angeles and San Francisco, above, receive electricity
that comes from a similar fuel mix. For example, based on the EPA Power Profiler data
[77], Los Angeles and San Francisco are located in the same subregion [80] used for the
EPA’s emissions finding tool, which gives both cities the same EEF, and therefore the
same ESS,. to ESS,i, ratio in this analysis. Also, some cities within a given climate zone
might purchase electricity from different sources using varying amounts of high-pollution
or low-pollution fuels, in which case ESS,./ESS,in could vary even with similar climate
conditions. For example, Boulder, Minneapolis, and Duluth have the highest EEF's, while
Helena, with a similarly cold climate, has a lower EEF (409 CO,/MWh) [77]. Therefore,
there is not as much potential for a CHP system to reduce CDE in Helena.

Table 4.6 presents PESS,./PESS,.i, for the evaluated cities for the three different
cases analyzed, and Figure 4.3 prevents this information graphically. Results indicate that
a CHP system shows potential to reduce PEC in all the cities except in Seattle, Helena,
San Francisco, and Los Angeles for Case A. For Case A, the cities mentioned above give
a ratio smaller than 1, which means that for this case, a CHP system is not favorable in
terms of primary energy reduction. For Case B, Seattle is the only city that shows
unfavorable potential, while for Case C the use of a CHP system seems favorable to
reduce the primary energy. The largest reductions would take place in Miami, Houston,
and Albuquerque. The smallest improvement would take place in Seattle. The PESS is
the difference between the local energy conversion factor and a nationwide average fuel

energy conversion factor, and therefore the amount of primary energy used to produce the
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electricity purchased on-site will determine how much a CHP system can reduce PEC in
that area. Based on the ECF state-by-state chart [8], Los Angeles and San Francisco again
have the same ECF which is used in this analysis, and therefore the same PESS to
PESSin ratio. Likewise, if different cities have different electricity conversion factors,
PESS/PESSnin could vary even with similar climate conditions. For example, Houston
shows a much greater potential for reducing primary energy than does Phoenix, even

though both cities are located in warm climates.

Table 4.6 ~ PESS/ PESS,, ratios for 16 U.S. cities analyzed in this investigation

Climate Zone City PESS/PESS,in PESS/PESS, i, PESS/PESS,n

(Case A) (Case B) (Case C)
1A Miami, FL 2.02 3.37 10.12
2A Houston, TX 2.02 3.37 10.12
2B Phoenix, AZ 1.41 2.36 7.07
3A Atlanta, GA 1.80 2.99 8.98
3B-Coast Los Angeles, CA [0.88 | 146 439
3B Las Vegas, NV 1.57 2.61 7.83
3C San Francisco, CA | 0.88 | 1.46 4.39
4A Baltimore, MD 1.87 3.12 9.36
4B Albuquerque, NM  2.02 3.37 10.12
4C Seattle, WA 035058 173
S5A Chicago, IL 1.95 3.25 9.74
5B Boulder, CO 1.80 2.99 8.98
6A Minneapolis, MN  1.87 3.12 9.36
6B Helena, MT 073 121 3.63
TA Duluth, MN 1.87 3.12 9.36
8A Fairbanks, AK 1.26 2.10 6.30
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Figure 4.3  PESS/ratios for 16 U.S. cities analyzed in this investigation

Emissions and Primary Energy Spark Spread: Summary and Conclusions

Spark spread has been used to indicate whether a CHP system shows potential to
reduce costs compared to an SHP system. This chapter introduced an emissions spark
spread and primary energy spark spread as screening parameters for indicating whether a
CHP system shows potential to reduce harmful emissions and PEC, using the steps
developed in CHAPTER III. ESSyin and PESS,in were determined to show at what point
a CHP system and SHP system would have similar results for emissions and PEC. When

ESS..t and PESS, are computed using recent, local data to be greater than ESS,,;, and
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PESSmin, the CHP system shows a potential benefit in terms of emissions reduction or
lowered energy consumption, and the magnitude of this benefit may be gauged with the
ratios ESS../ESSmin and PESS../PESSin.

Low ESS../ESSnin ratios (Table 4.5) correspond to low EEFs (Table 4.1). For
example, Helena does not show favorable emissions potential for CHP system
applications in the way that the other colder climate cities do, resulting from Helena’s
much lower EEF of 409 kg/MWh. Helena receives almost half of its electricity from
hydropower sources and uses less coal, oil, and natural gas than the national average.
Therefore, since the electricity purchased by an SHP system causes less CO, emissions in
Helena than it does in Boulder, replacing SHP with CHP in this location would not cause
the same amount of reduced emissions.

Low PESS,/PESSin ratios (Table 4.6) correspond to low ECFs (Table 4.2). The
state of Washington has a low ECF of 1.5, meaning that a certain amount of electricity
purchased from the grid in Seattle would not require as much primary energy as the same
amount purchased in any of the other cities investigated. A CHP system in Seattle would
use more primary energy than an SHP system, if both systems have the same
characteristics as defined above.

If the emissions factors for electricity and fuels as well as the site-to-source
conversion factors are known, the ratios ESS,./ESSmin and PESS,./PESS..i, can be can
be applied to any location to evaluate the potential of CHP systems for providing
environmental and economic benefits. This screening tool may indicate whether a more
thorough analysis is of interest. The two new screening parameters provided in this

chapter indicate a CHP systems’ potential to reduce CDE or to reduce PEC, which can
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then be used in conjunction with the cost spark spread to inform energy policy and to
evaluate appropriate incentives for CHP systems installations based on the desired

reduction in economic costs, harmful emissions, and energy consumption.
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CHAPTER V
REDUCING EMISSIONS OF THREE GREENHOUSE GASES FOR DIFFERENT

BUILDING TYPES USING BASE LOADED CHP SYSTEMS

Under the right conditions, a CHP system can reduce the harmful emissions
resulting from power production, causing less greenhouse gases to be released than with a
reference system where power comes from the electricity grid. Different building types
may be more or less likely to save emissions with CHP systems based on the electrical
and thermal needs of the building. In this chapter, CHP systems are evaluated with seven
different types of buildings located in Chicago, Illinois for their potential to reduce CO»,
NOy, and CH4 emissions. The CHP system modeled in this chapter is sized to provide
30% of the average hourly electricity needs of each building. The total carbon equivalent
emissions, PEC, and operational cost of a CHP system are presented along with those of
a reference system. In addition, the CHP system efficiency is analyzed with respect to the

fraction of the thermal load that is satisfied by the CHP system (R},).

Model Development
Chicago Building Models
For the building models presented here, the CHP system is sized such that it
provides a constant base load equal to the minimum electricity required by the building.

The overall energy flows for the model CHP system are shown in Figure 3.1.
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For this reason, several model buildings representing a wide variety of building
types in the commercial sector are investigated in this chapter. The reduction of
emissions is considered as a result of using a CHP system in place of a conventional SHP
system where electricity is purchased from the grid. Similarly, the operational cost and
PEC using a CHP system for each building is considered against that of the reference
case.

The buildings analyzed are located in Chicago, IL. The city of Chicago has set
aggressive goals for reducing greenhouse gas emissions and has identified building
energy usage as the primary contributor to greenhouse gas emissions, and therefore the
primary target for emissions reduction [84]. The best candidates for reduced emissions
and energy consumption with CHP can be identified by analyzing different building
types. In order to incorporate NOy and CH4 emissions in addition to CO, emissions, the
carbon equivalent parameter is used to assess the overall global warming potential of the
emissions associated with a particular case. This value correlates the radiative forcing
ability of a certain gas relative to that of CO; [79], where radiative forcing is used to
quantify the strength of a given agent toward causing climate change [85].

The operational cost analysis for each building determines whether monetary
savings are indicated, and when the CHP system would cost more than the reference case,
the monetary value of carbon credits necessary to make up for the additional cost is

calculated.

CHP System Model

This section presents the equations used to model the base-loaded CHP system. A

schematic of the CHP system is shown in Figure 3.1. The electric energy that is to be
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supplied by the power generation unit (PGU) of the CHP system, i.e., the amount of base
load, is assumed to be a fraction of the hourly electricity, R., needs of the building as

follows:

Ep

gu = Re Eb 51
where E), here represents the hourly electricity needs of the building, including electric

equipment, lights, and electricity used for cooling.

The CHP system fuel energy consumption can be estimated as

E
Fopy = —29 5.2
Ne,pgu

Since the PGU operates at constant load, the efficiency of the PGU is again
assumed to be constant.
The heat recovered from the PGU can be expressed using Equations (3.3, 3.4, and

3.5)as

Qrec = Cte (Fchp - Epgu)nhrs,chp 5.3
The heat required from the CHP system in order to meet the building’s heating

requirement (Qp) is

_ Q@
Qreq - % 54

where 7, 1s the efficiency of building heating system when the CHP system and/or boiler
are used to meet the building’s heating load. The required heat and the energy flows

which are required to meet this demand are illustrated in Figure 5.1.
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If the recovered heat given by Equation (5.3) is sufficient to satisfy the thermal
load, Qyse i again represents only the portion of the recovered heat that is used to satisfy

the thermal demand of the building, as shown in Equations (3.35) and (3.36) and Figure
5.1

If the recovered heat is not sufficient to satisfy the thermal load, additional heat in

the amount Q, is supplied by the boiler to meet Qyeq as follows:

Qreq = useful + Qboi/er 55
where Q,,,,. is the additional heat needed from the boiler to satisfy the building’s heat
requirement, and is therefore 0 when O, > Q,,. -

The total thermal load of the building can be expressed in terms of the heat

supplied by the CHP system, Qcnp, and the heat supplied by the boiler, Quoiter, as follows:

Qh = Qchp + Qbailer 5'6

where Qcnp and Qpoiter can be determined as:

Quseful
=— 5.7
QChp Nhe
_ Qpour
Qboiler = =20l 5.8
Nhe

If the boiler provides heat to the building, the boiler fuel energy can be

determined as

— Ql;oiler
Fboiler - ] 59
Nboiler
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where 7y, 1 the boiler efficiency. The boiler and its energy flows are also shown in

Figure 5.1.

0y
Building

Figure 5.1  Heat flows toward meeting the building’s heat demand

Depending of the size of the PGU of the CHP system, the amount of electricity

produced may not match the electricity required by the building (E ). Therefore

IfEb > Epgu then Egrid = Eb — Epgu 5.10
IfEy < Epgy then Eeycess = Epgu — Ep 5.11

where Eg,.;q 18 the amount of electricity required from the grid and Egycess 1s the amount

of excess electricity that can be exported or stored for future use.
The total fuel consumption and electricity consumption registered at the fuel

meter and electric meter, respectively, can be estimated as

En, = chp + Fypoiter 5.12
Em = Egria 5.13
The relative contribution of the CHP system to satisfy the electric and thermal

building loads can be defined as:
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Re + Rgrig = 1 — 220 4 Jovid _ g 5.14

Ep Ep
Rh + Rboiler =1- L + Qg_rid =1 5.15
Qp Qb

where R, represents the fraction of the total electric load that is supplied by the CHP

system, Ry

4 represents the fraction of the electric load that must be imported from the
grid, Ry, 1is the fraction of the thermal load supplied by the CHP system and Ry, y;jer
represents the fraction of the thermal load supplied by the boiler.

The ratio of R, to R, can be expressed as

ﬁszR_ChP 5.16

Rp PHRp
where PHR yp, as before, is the power-to-heat ratio of the CHP system and PHR,, is the

power-to-heat ratio of the building demand. These parameters can be determined as:

PHR, = % 5.17
b
PHR,, = -pov 518
chp Qchp '

If all the heat recovered is used by the building (Quse ful = Qrec), the ideal

power-to-heat ratio for the CHP system, PHRyp jgeqi» can be expressed using Equations

(5.2)and (5.3) as

Ne,pgu
PHR ; = 5.19
CHP,ideal Cwnhrschpnhc(l_nepgu)

Therefore, for a fixed value of R,, which occurs with constant base load

operation, and a known value of PHR,, based on the needs of a specific building, the
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Riideary that must be obtained from the CHP system can be calculated using Equation

(5.16) as
PHRp,
Ry =R,————— 5.20
h(ideal) € PHRcHp ideal
The CHP system efficiency is expressed as

No,chp = Ne,chp T Nth,chp 5.21

The electric efficiency can be determined as:

E’U.SE u
Nechp = ——L4 5.22

Fpgu

where Ey e rqy 18 the portion of the electricity produced by the PGU that is used by the
building. Since the system is base-loaded and sized to satisfy the minimum electricity
requirement of the building, here Eysory; = Epgy and Mg chp = Nepgu-

The thermal efficiency can be determined as described previously:

Quseful
77th, Y T 5.23
chp Fpgu

Emissions, Primary Energy, and Operational Cost Analysis
Emissions

The difference in emissions from using the CHP system versus using the

reference system (which was forced to be positive in Equation (4.5)) is

AEmissions = Emissionsgy, — Emissionscyp 5.24
where Emissionsgy,, are the emissions from the reference case using the SHP system and

Emissions y, are the emissions due to CHP system operation and can be calculated as
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Emissionsgp, = E,EEF + F, FEF 5.25

Emissionscp, = EnEEF + F,FEF 5.26
where EEF and FEF are the emission conversion factors for delivered electricity and
natural gas fuel, respectively. Equations (5.25) and (5.26) include terms in addition to the
expressions previously developed in CHAPTER IV because the entire building demand is
taken into account, rather than only the amount provided by the CHP system. The amount
of CO,, NOy, and CH4 emissions can be determined using Equations (5.25) and (5.26) by
using the emission conversion factors for CO, NOy, and CHy, respectively. These
emission conversion factors depend on the location where the facility is installed and on
the fuel mix used to generate electricity in that location. The two alternative scenarios for
providing electricity and heat to the building are illustrated in Figure 5.2. The emissions
caused by the SHP system, shown on the left, result from the production and distribution
of power plant electricity and the use of a boiler to provide heat. The emissions caused by
the use of a base loaded CHP system, shown on the right, result from the CHP system
operation as well as from supplemental power plant electricity and boiler heat. The
emissions associated with the CHP system can be evaluated against the emissions

associated with the reference case by comparing Equations (5.25) and (5.26).
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Figure 5.2  Emissions obtained from the reference system and the CHP system

The carbon equivalent, a parameter used by the U.S. Environmental Protection
Agency [79] and the U.S. Energy Information Administration [86] to compare the
emission from various greenhouse gases based upon their global warming potential

(GWP), can be determined as:

CCequivatent = Emissionsco,CEco, + Emissionsyo, CEyo, + Emissionscy,CEcy, 5.27
where CE¢q,, CEyq,, and CE¢y, are the total carbon equivalent emissions factors for

carbon dioxide (CO,), nitrous oxides (NOy), and methane (CH4), respectively. These three

gases can be produced by all fuel types [87] and make up three of the four principal
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greenhouse gases, along with halocarbons, which are associated with refrigeration agents
rather than fuels [85]. This chapter only accounts for CO, NOy, and CH4 in the carbon
equivalent calculations, but if other greenhouse gases are produced at the site they may

be treated in the same manner.

Primary Energy and Cost

In addition to the emissions reduction, other parameters such as the PEC and
operational cost can be evaluated to determine the performance of a CHP system. The

PEC of the building operating the CHP system is calculated in the following manner:

PEC.p, = EmECF + E,FCF 5.28
where ECF and FCF are the primary energy conversion factors for electricity and fuel,
respectively.

The variation of the PEC of the CHP system with respect to the reference case can

be expressed as

APEC = PECgpp, — PECcpy 5.29
where PECgpy,r is the PEC of the reference building and can be determined using
Equation (5.28) by changing E,, and F, to E; and F}, respectively.

Finally, the CHP system operational cost can be determined as follows

Costepy = EpCost, + EpCosty 5.30
where Cost, and Cost; are the cost of electricity and fuel, respectively.

The variation of the operational cost of the CHP system with respect to the

reference case can be expressed as
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ACost = Costspy, — Costeyp 5.31
where Costgyy, is the operational cost of the reference building and can be determined

using Equation (5.30) by changing E,, and F,, to E}; and F}, respectively.

Results and Discussion

Representative prototype building models developed by the Department of
Energy [75] were used to apply the model developed in the previous section. These
models were simulated over a year using EnergyPlus [88] software using the weather
data of Chicago, IL, and the output from the simulations, in the form of electric and
thermal building loads, were used as inputs to the model presented in the Model
Development. Table 5.1 presents the different buildings selected, including the total floor
area, and the results obtained from the simulations, as well as the calculated PHR;. The
size of the selected buildings ranges from 511.15 m? (full service restaurant) to 22,422.2
m? (hospital). Table 5.2 presents the electric and gas utility rates used in this chapter,
which are average annual rates, as well as the primary energy conversion factors for the
city of Chicago obtained from [89]. Although the electric and gas utility rates may vary
for different building applications, average rates were considered in order to make a fair
economic comparison among the different building types. Table 5.3 presents the CO,,
NOy, and CH4 emission conversion factors for electricity and natural gas [88] while Table

5.4 presents the carbon equivalent conversion factors for the city of Chicago [87].
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Table 5.3  CO,, NOy, and CH4 emission conversion factors for electricity and natural
gas for the city of Chicago [89]

Electricity Natural Gas

CO, Conversion Factor (g/MJ) 341.7 52.1
NOy Conversion Factor (g/MJ) 0.622 0.0473
CH, Conversion Factor (g/MJ) 0.7472 0.00106

Table 5.4  Total carbon equivalent conversion factors for CO,, NOy, and CHy [87]

Factor
CE CO; (kg C/kg CO,) 0.2727
CE NOy (kg C/kg NOy) 80.7272
CE CH,4 (kg C/kg CHy) 6.2727

To compare the performance of the CHP system it was assumed that the fraction
of electricity produce by the CHP to the total building electricity (R,) was the same for all
the evaluated buildings (0.3). Table 5.5 shows the size of the PGU used to simulate each
building, representing 30% of the average electricity needed by the building in an hour.
The size of the PGU in relation to the building’s electrical needs is held constant across
all building types, which allows the influence of other parameters on the overall CHP
system performance to be determined while the relative size of the PGU is consistent for
all cases. For only two of the buildings the sizes selected generate a slight amount of
excess electricity, and that is to be neglected from the analysis. Table 5.6 presents the

CHP system parameters used in this chapter.
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Table 5.5  PGU size used to simulate the evaluated buildings for R, = 0.3

Building PGU Size (kW)
Full Service Restaurant 11

Large Hotel 96

Primary School 30

Outpatient 47
Supermarket 60

Small Hotel 60

Hospitals 316

Table 5.6 ~ CHP system parameters

Parameter Value
PGU Efficiency, #peu 0.25
Factor that accounts for energy losses, & 0.95
Boiler efficiency, #poiter 0.8
Heat recovery system efficiency, #s,cip 0.8
Building Heating System efficiency, #. 0.8

Figure 5.3 illustrates a comparison of the CO,, NOy, and CH4 emissions of the
building served by an SHP system and the building using a CHP system. The value of R;,
for each building, corresponding to R.=0.3, is presented in the x-axis. Therefore, it can be
seem that the value of Rj, is different for all the evaluated buildings. In general it can be
seen that the use of a CHP system reduces the CO,, NOy, and CH,4 emissions for all the
evaluated buildings. In addition, it can be observed that the higher the R, value the higher
the reduction of emissions from the CHP system. This can be explained since higher R),
values mean that the CHP system is providing most of the thermal load using the
recovered heat, thereby reducing the amount of fuel that otherwise would be used to
satisfy the thermal demand of the building. The building that shows the highest reduction
of CO,, NOy, and CH4 emissions is the outpatient building: 19%, 24%, and 30%,

respectively. The outpatient facility has the highest Rj, (0.89). On the other hand, the
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building that shows the least reduction of CO,, NOy, and CH4 emissions is the restaurant:
13%, 20%, and 30%, respectively, and the restaurant has the lowest R (0.33). This

means that only 33% of the building’s thermal demand is satisfied by the CHP system.
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Figure 5.3  Comparison of the CO,, NOy, and CH4 emissions of the reference building
with the CHP building
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Figure 5.4 shows the carbon equivalent for the reference buildings and the
buildings using a CHP system as well as the reduction in emitted carbon obtained with
the use of the CHP system. For all of the buildings, the use of a CHP system reduces
emissions, similar to the results presented in Figure 5.3. Also, the trend regarding the R,
value is the same as before. Higher values of R;, provide more reduction of emissions for
the evaluated buildings. The maximum reduction in kg C was obtained for the large hotel
(318,713 kg) while the minimum reduction was obtained for the small office (5,855 kg).
On the other hand, the maximum and minimum reductions in percentage points were
achieved for the outpatient building (20.6%) and the restaurant (15.6%), respectively.
Figure 5.3 and Figure 5.4 illustrate the environmental benefits of the use of CHP systems
in different commercial buildings since for the selected location the use of the CHP

system always reduced emissions under the stated conditions.
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Figure 5.4  Comparison of the carbon equivalent of the reference building with the
carbon equivalent of the CHP building and the reduction obtained with the
CHP application
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Now that the benefits of the use of CHP systems in terms of reducing emissions

associated with GWP have been established, it is useful to evaluate other parameters such

as PEC and operational cost. Figure 5.5 shows the PEC of the reference buildings and the

buildings using a CHP system as well as the variation of the PEC with the use of the CHP

system from the reference case. In this figure, positive values mean that the CHP system

reduces the PEC and negative values means that the CHP system increases the PEC. This

figure illustrates that the use of a CHP system reduces the PEC for all buildings examined

except for the primary school and the small office buildings. The maximum PEC

reduction was obtained for the outpatient building, corresponding to the highest Ry, value

(8.8%). For the primary school and the small office building the PEC was increased by

1.5% and 2.6%, respectively. Higher R, values tend to reduce PEC as opposed to lower

Rj, values that lead to similar or higher PEC than the reference case.
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Figure 5.5  Comparison of the PEC of the reference building with the PEC of the CHP
building and the variation from the reference obtained with the CHP

application
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Figure 5.6 shows the operational cost of the reference buildings and the buildings
using a CHP system as well as the variation of the operational cost with the use of the
CHP system from the reference case. Similarly to Figure 5.5, positive values mean that
the CHP system reduces the operational cost and negative values means that the CHP
system increases the operational cost. The use of a CHP system increases the operational
cost in four buildings: full service restaurant, primary school, small office, and
supermarket. For the restaurant and supermarket buildings, operational cost increased
even though PEC was reduced with CHP. The maximum percentage increase of
operational cost occurred for the small office building, 7.7%. On the other hand, the
maximum reduction of operational cost was achieved for the outpatient building, 5.7%.
The trends shown in this figure imply that higher R, values tend to provide operational
cost savings from the CHP operation. The values presented in Figure 5.6 represent only
the operational cost due to fuel and electricity purchases, and for a complete economic
analysis the capital cost and maintenance cost must be considered.

Figure 5.5 and Figure 5.6 illustrate that in addition to the environmental benefits
obtained from the use of CHP systems for these building types in Chicago, other benefits

such as reduced PEC and reduced operational cost could be achieved.
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Figure 5.6 ~ Comparison of the operational cost of the reference building with the
operational cost of the CHP building and the variation from the reference
obtained with the CHP application

Figure 5.7 presents the variation of the carbon equivalent, operational cost, and
PEC for all the evaluated buildings. From this figure it can be seen that three of the seven
buildings show reduction of the three parameters when a CHP system is used. These
buildings are: large hotel, small hotel, and outpatient. On the other hand, the remaining

buildings show an increase of the operational cost and/or the PEC.
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Figure 5.7  Variation of the carbon equivalent, PEC, and cost of the CHP building with
respect to the reference case

The outpatient building is the one that has the highest R, and it is the one that
shows the best performance in terms of emissions, operational cost, and PEC. Therefore,
it seems that selecting CHP equipment to provide high R; values is beneficial for the
performance of the CHP system relative to the SHP system. As mentioned before, the
total emissions are reduced for all the buildings with the use of CHP systems. If carbon
credits are available to provide financial reimbursement for the reduction in greenhouse
gas emissions, the higher operational cost of some of the buildings could be offset and
thereby become economically attractive. For example, the use of a CHP system at a
primary school reduces the CO, emissions by 151,162 kg/yr while increasing the
operational cost by $5,538/yr. Therefore a minimum carbon credit of approximately
$27.3/kg of CO, is required to offset the different in the operational cost. The
approximate carbon credits needed for the restaurant, small office, and supermarket are

$70.5/kg, $27.3/kg, and $46.2/kg, respectively. It is important to mention here that the
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operational cost may be improved for some of the evaluated buildings, i.e., small office,
primary school, by reducing the operation hours of the CHP system to correspond with
periods of high heating demand, which effectively increases the Ry, value for the
operational periods. However, this may reduce the environmental benefits that can be
obtained from around the clock operation of the CHP system.

Figure 5.8 shows the CHP efficiency, percent of the recovered heat not used,
actual Ry, Ry (igeary, and the ratio of Rj, to Ry (igeary- The value of the ratio Ry/Rj, jigeary for each
building, corresponding to R, = 0.3, is also presented along the x-axis in parentheses.
This figure illustrates that for a fixed value of R, (0.3) the value of R;, changes depending
on the PHRy. In addition, in the ideal case where all the electricity and heat generated by
the CHP system were used, the PHR;, would have been constant for all the buildings.
However, as can be observed in Figure 5.8, for all the buildings, there is some percentage
of the recovered heat that is not used by the building and has to be discharged. This figure
also shows the Rj, jizea that represents the value of R, that the CHP system has to supply
to guarantee that all the heat recovered is being used. This value may be higher than 1,
which simply means that the CHP system has to supply all the heat to satisfy the thermal
load of the facility. Figure 5.8 illustrates that the higher the CHP efficiency, the lower the
percentage of recovered heat that is not used. On the other hand, the higher the
percentage of unused recovered heat the higher the difference between R;, and Rj, jideas.
From these results it can be concluded that the higher the ratio between R, and R}, jideas)
the higher the overall efficiency of the CHP system and the lower the amount of unused

recovered heat.
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Figure 5.8 CHP efficiency, percent of the recovered heat not used, actual R;, Ry, gideas),
and the ratio of R, to R (idear)

Summary and Conclusions

This chapter presented a model to evaluate the potential emission reductions from
the use of CHP systems. The model was applied to seven different commercial buildings
that were simulated in the city of Chicago. Results indicated that the use of a CHP system
always reduced emissions of CO,, NOy, and CHy, as well as the carbon equivalent for all
buildings studied. The building that shows the highest reduction of CO,, NOy, and CH4
emissions is the outpatient building: 19%, 24%, and 30%, respectively, and it has the
highest R; (0.89). Additional parameters such as PEC and operational cost were also
evaluated and compared with the reference building performance. Only two of the seven
buildings showed an increase of the PEC when a CHP system is used (primary school
and small office), while the remaining five showed a reduction of the PEC with respect to

the reference building. Four of the seven buildings present an operational cost higher than
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the reference buildings (full service restaurant, primary school, small office and
supermarket). In general it is beneficial to have high R, values, or to guarantee that the
CHP provides a significant portion of the thermal demand of the facility, since this will
provide reduced emissions, cost, and PEC due to the CHP system operation. In addition,
the R, value should be designed to be close to the Ry iqeq since this guarantees higher
CHP system efficiencies. The results presented in this chapter reflect the need for
effective policies and incentives to make the use of CHP systems more attractive from the
economic point of view, if reduced emissions and energy consumption are paramount
concerns. For the buildings analyzed in this chapter for the city of Chicago, the use of
CHP systems always reduce the emissions of CO,, NOy, and CHa, as well as the carbon
equivalent. However, for some buildings the cost and/or PEC are higher that the
reference building. If additional benefits such as power quality and power reliability were
factored into an economic analysis, the use of a CHP system could also be more feasible

and attractive economically.
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CHAPTER VI
THERMAL ENERGY STORAGE WITH CHP—EFFECTS ON COST, PRIMARY

ENERGY CONSUMPTION, AND CARBON DIOXIDE EMISSIONS

As demonstrated by CHAPTER III through CHAPTER V, CHP systems can
result in lower operational cost, PEC, and CDE when compared to separate heat and
power systems, the standard alternative of purchasing electricity from the grid and
supplying heat from a boiler. However, the potential for these benefits is closely linked to
the relationship between PHR,, and PHRy, as well as the proportion of the building’s
heat demand that is met by the CHP system, as discussed in the previous chapters.
Thermal energy storage (TES) has been proposed to store excess thermal energy
produced by a CHP system when it is not needed by the building and deliver it at a later
time when the building’s demand increases, alleviating some of the load imbalance.

The benefits obtained by using a CHP system also vary with the size of the prime
mover, with larger PGUs being useful when the building has a higher thermal load [45].
Variations in the electrical and thermal load of a building can make proper sizing and
choice of operational strategy for a CHP system into complex tasks, especially if
economic, environmental, and energetic concerns are all factored into the analysis [37].

In the models presented in this chapter, the CHP system is base-loaded, providing
a constant power-to-heat ratio, as in the previous analyses. The power-to-heat ratio

demanded by the building depends on the location and the needs of the building, which
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vary throughout the day and throughout the year. At times when the CHP system does not
provide the electricity needed by the building, electricity is purchased from the grid, and
when the CHP system does not provide the heat needed by the building, heat is generated
with a supplemental boiler.

Thermal energy storage (TES) is an option introduced in this chapter which can
help to address the building’s load variation by storing excess heat when the building
needs less heat than the Q... Then, excess thermal energy can then be used later when the
building needs more heat than Q,.., supplanting some of the thermal energy which would
otherwise be produced by the building’s boiler. According to Hyman [20], hot water TES
can allow a CHP system to operate at a higher load (or, therefore, larger PGU size) than
would otherwise be beneficial. This possibility is investigated in the first part of this
chapter.

The potential for a CHP system with TES to reduce cost, PEC, and emissions is
investigated in this chapter, and compared with both a CHP system with and without TES
and with the standard reference case SHP system. This proposed model is evaluated for
three different commercial building types in three different U.S. climate zones. The size
of the power generation unit (PGU) is varied and the effect of the correspondingly
smaller or larger base load on the cost, PEC, and emissions savings is analyzed. The need
for a supplemental boiler to provide additional heat is also examined in each case with
the thermal storage option.

Next, a CHP system is investigated with and without a thermal energy storage

option for eight different commercial building types located in Chicago, IL. The
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building’s electrical and thermal loads are simulated on an hourly basis over one year and
a CHP system is modeled operating at a constant baseload. The CHP system alone is
compared with a CHP system which incorporates TES in varying amounts, up to the

maximum thermal energy required by the building in an hour.

Methodology for Varying Location and PGU Size Study

A CHP system without thermal energy storage and a CHP system with thermal
storage (CHP-TES) are compared against the reference case, in which electricity is
purchased from the grid to meet the building’s electrical needs and heat is obtained from
a boiler to meet the building’s thermal needs. The increase or decrease in operational
cost, PEC, and emissions with respect to the reference case is presented for three different
building types in three different locations. The buildings analyzed are the building
models used in previous chapters which were created to represent typical commercial
buildings in the U.S. [75], and they are simulated with EnergyPlus software [88]. The
three buildings considered are a small office, a full service restaurant, and a hospital.
Each building is simulated in Houston, TX, a warm climate, San Francisco, CA, a mild
climate, and Duluth, MN, a cold climate.

Figure 6.1 illustrates the CHP system while Figure 6.2 illustrates the CHP-TES

system.
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Figure 6.1  CHP system schematic
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Figure 6.2  CHP-TES system schematic

The CHP system in all cases operates at a constant base load. The size of the PGU
is varied for each building type and location. The smallest PGU size provides between
11% and 16% of the building’s average hourly electrical demand (R, averages from 0.11
to 0.16), while the largest size provides between 66% and 86% of the average hourly
electrical demand (R, average from 0.66 to 0.86). The electrical and thermal energy
demands of each building are presented with the Results for Varying Location and PGU
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Size Study. Because the electricity needed by the building will vary over the course of
days, weeks, or months, a larger PGU may sometimes produce excess electricity.

The electricity produced each hour by the PGU is given by:

E,,, =PGUsize* hr 3.6 x10° 6.1

where PGUsize is in kW and E,, is in J.

The fuel energy used by the PGU of the CHP system is given by:

E
F,,=—"" 6.2

chp
ne,pgu

where 7.0 15, again, considered to be constant because the PGU operates at constant
base load.

The heat recovered from the CHP system is the same as Equation (5.3):

Oree =y = E ) Cllirs cnp 6.3
where C,, accounts for energy losses before the HRS.

The heat required by the building is determined using the EnergyPlus simulation
output for natural gas used for heating and natural gas used for hot water. When more
heat is recovered during an hour than the building requires, that heat is considered excess
or waste heat for a typical CHP system. For a CHP-TES system, that additional heat is

stored as thermal energy until a maximum thermal capacity is reached, as described by

Equations (6.4) through (6.7).
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Qstarage_ new — (Qrec + Qsmrage_ald ) - Qreq if (Qrec + Qsturageiold) > Qreq 6.4

O, orage new =0 Otherwise 6.5
starageiold = erorageiold + Qstorageinew lf Qstomgeiold = Qstorageiold + Qstorageinm' 66
Qstorageiold = TScap Othemlse 6-7

where Ogorage new 18 the thermal energy added to thermal storage at each time step,
Ostorage old 1S the thermal energy present in the TES device, and Q,., is the thermal energy
needed to meet the building’s energy requirement.

When, at a later time step, the heat recovered is less than the building requires, the
stored thermal energy is used toward meeting the building’s thermal requirement. If the
heat recovered combined with the heat available in thermal storage is greater than the
heat required for every time step, then the building’s boiler is not needed.

0

boiler

= req - (Qsmrage_old + Qrec) lf (Qstoragg old + Qrec) < Qreq 68

O =0 otherwise 6.9

boiler

where Q, .. is the amount of heat required from the boiler to be delivered to the
building’s heating system, as shown in the section CHP System Model of the previous
chapter.

If additional heat is required beyond the heat recovered (for CHP) or the heat
recovered and the thermal energy in storage (for CHP-TES), then a natural gas boiler will
be used to provide the required heat. The fuel consumed by this boiler is given by

Equation (5.9) as Fypijer = Opoiter
Nboiler
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When additional electricity is required beyond the electricity produced by the
PGU, electricity will be purchased from the electrical grid in the amount of Eg,.; as shown

in Equation (6.10).
Egria = Ep — Epgu 6.10

Cost
SHP

To provide a baseline for comparison, the operating cost of the reference case

where no CHP system is present is calculated as

Cost,,, = E,, Cost, + F,

boiter COSE 6.11
where E,., represents the electricity required by the building, Cost,. is the cost of
electricity purchased from the grid, Fj.i., is the fuel energy consumed by the boiler
[Equation (5.9)] and Cost,is the cost of the fuel based on energy content. This calculated

cost does not take into account any maintenance or other equipment costs for the

building’s equipment.

CHP

The cost to operate the CHP system is calculated as

Cost,,, = E,,,Cost, +(F,, +F,

pgu boiler

)Cost , 6.12

where Eg,.s represents any additional electricity that must be purchased from the grid

[Equation (6.10)] and Fpjier is related to Q’yoiler by Equation (5.9).
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CHP-TES

The cost to operate the CHP system with thermal storage (CHP-TES) is calculated
as in Equation (6.12). However, Q ’pi.r may be reduced based on the contribution from
the TES device.

The storage device is considered to be discharged (no thermal energy available
from storage) at the beginning of the simulation and the storage modeling is handled as in
Equations (6.4) through (6.7).

If the amount of heat recovered from the CHP system is less than the heat
required by the building (Q,ec<0)q), then thermal energy will be taken from the TES

device as long as thermal energy is available:

Qstoragenew = QstorageLold + Qrec - Qreq lf Qstorag&old 2 Qrec - Qreq 6 13

O.oragenew = 0 otherwise 6.14

Note that if the amount of heat recovered from the CHP system is the same as the
heat required by the building (Q,e.=0), then no thermal energy will be transferred to or

from the TES device:

Qstoragenew = Qstorag&old 6 1 5

Equations (6.13) through (6.15) do not take into account any heat losses from the
associated with the TES device and there are no limitations placed on the amount of heat
which can be transferred in a given time period. In an actual system, the limitations of the
heat exchangers and the insulation of the device must be considered.

The amount of heat transferred from TES to the building in a time step, QOrzs, is:
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QTES = erorage—ald - Qstorage—new # Qstarage—old - Qstorage—new > O 616

O =0 otherwise 6.17

The fraction of the thermal demand that is satisfied by the CHP system with TES

is:

Qrec + Q .
Rh,CHP—TES = Zree =18 if (O +Ops) < Qreq 6.18
Qreq
R, crpes =1 otherwise 6.19

The heat provided from the supplemental boiler is now:

Qboiler = Qreq - Qrec - QTES lf Qreq - Qrec - QTES >0 6.20
0,.... =0 otherwise 6.21

The fuel energy consumed by the boiler can be calculated using Equation (6.2)
again, and then the cost to operate the CHP system and the cost to operate the CHP-TES
system are compared with the cost of the reference case. This operating cost analysis
does not include capital costs or any costs other than supplying the necessary fuel for the
PGU and the boiler and purchasing electricity from the grid. The addition of TES to a
CHP system will require additional capital and maintenance expenses, which must be
weighed against any possible reductions in the size requirement of the supplemental
boiler along with any possible reductions in operating costs for the system as a result of
TES installation.

The values used for Cost, and Cost, for this section are given in Table 6.1 below.
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Table 6.1  Cost of electricity [90] and natural gas [91]

Electricity ($/kWh) Natural Gas ($/MMBtu)

Houston 0.0875 7.822

San Francisco 0.1215 8.218

Duluth 0.0834 7.525
Primary Energy

The PEC of the SHP system case is calculated as

PEC,, =E, ECF +F,,, FCF 6.22

where ECF and F'CF again represent the primary energy conversion factors for electricity

and natural gas, respectively. The values used are given in Table 6.2 below.

Table 6.2  Site-to-primary energy conversion factors [88]

Electricity, ECF Natural Gas, FCF
Houston 3.632 1.092
San Francisco 3.095 1.092
Duluth 3.437 1.092

Next, the PEC of the CHP system is calculated.

PEC p = E o ECF +(F, . + F,

pgu boiler

YFCF 6.23

where Foir 18 determined according to Equation (5.9) for CHP and Equations (5.9),

(6.20) and (6.21) for CHP-TES.
Finally, the PEC of the CHP system and the PEC of the CHP-TES system are

compared with the PEC of the reference case.
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Carbon Dioxide Emissions

The CDE for the SHP system case is calculated.

CDE

shp

= EreqCFCDE,e +F

boiler

CFeps, 6.24

where CFcpg . and CFcpg s represent the emission conversion factors for electricity and

natural gas, respectively. The values used are given in Table 6.3 below.

Table 6.3  CDE conversion factors [79]

Electricity, CFepg. (ton/yr-kWh)  Natural Gas, CFcpg s (ton/yr-kWh)

Houston 0.0006263 0.0001996
San Francisco 0.0003405 0.0001996
Duluth 0.0008613 0.0001996

Next, the CDE of the CHP system is calculated.

CDE,;p = E, . ,CFrpy, +(F,,, +F,

pgu boiler

)CF oy s 6.25

grid
where Fir 18 again determined according to Equation (5.9) for CHP and Equations
(5.9), (6.20) and (6.21) for CHP-TES.

Finally, the CDE of the CHP system and the CDE of the CHP-TES system are

compared with the CDE of the reference case.

Assumed Parameters for CHP System

The basic characteristics of the CHP system, such as the efficiency of the PGU,
are assumed to be constant in order to allow for comparison between the nine different

situations. The values for these parameters are given in Table 6.4.
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Table 6.4  CHP system parameters

Parameter Value
Ne.peu 0.3

Cee 0.95

T]rec, nboiler 08
TES.., 220 kWh

The water tank size is sufficiently large so that the changes in cost, PEC, and
CDE will not be highly sensitive to the tank size. If a thermal storage device is chosen in

practice, it may be sized as described by Ren et al. [23].

Results for Varying Location and PGU Size Study

The operational cost, PEC, and CDE was computed in each case for the reference
case, a CHP system, and a CHP-TES system. The variation of the CHP system from the
reference case with and without TES is plotted for each building type and city.
Additionally, the possibility for CHP-TES to eliminate the need for a supplemental boiler

was investigated.

Small Office Building

The energy requirements obtained from EnergyPlus for a small office building in
each of the three locations are presented in Table 6.5, where E ., 4 represents the
average electricity needed by the building in an hour, E. i, represents the minimum
electricity needed in an hour, Q. v represents the average thermal energy needed by the

building in an hour, and PHR}, is the ratio of E,yave t0 Oreg,ave-
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Table 6.5  Small office building energy requirements [88]

E req,ave (MJ ) E req,min (MJ ) Qreq,ave (MJ ) PH, Rb

Houston 40.75 7.73 4.37 9.33

San Francisco 32.35 7.73 5.50 5.88

Duluth 34.40 7.73 61.89 0.56
Houston

The relative results for a small office building with varying PGU sizes in Houston

are presented in Figure 6.3.

N Cost mPEC =CDE
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Figure 6.3  Variation of cost, PEC, and CDE from reference case for CHP and CHP-
TES with varying PGU size for a small office building in Houston

For the 1.25 kW and 2.5 kW engines, the cost, PEC, and CDE are all reduced for

the small office in Houston. In both cases, TES provides additional savings in cost, PEC,
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and CDE. For example, the 2.5 kW CHP-TES system provides an additional 0.9%, 1.0%,
and 0.95% decrease from the reference case for cost, PEC, and CDE as compared with
CHP with no TES available. For the 5 kW size, the CHP system reduces PEC but causes
increased cost and CDE over the reference case. Adding thermal storage to the 5 kW
CHP system will allow the CHP system to reduce cost over the reference system, and it
will reduce the amount of CDE. Increasing the PGU size over 5 kW causes the CHP to
increase cost, PEC, and CDE over the reference case. As shown for the 7.5 kW case,
even the CHP-TES system, which has slightly lower cost, PEC, and CDE, is significantly
higher than the reference case and therefore is not a viable option at this size. A larger
PGU size results in more excess heat that is not used by the building due to the high

PHRy in Houston [92].

San Francisco

The relative results for a small office building with varying PGU sizes in San

Francisco are presented in Figure 6.4.
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Figure 6.4  Variation of cost, PEC, and CDE from reference case for CHP and CHP-
TES with varying PGU size for a small office building in San Francisco

Regardless of the PGU size, the CHP and CHP-TES systems cause an increase in
CDE in San Francisco. This is due to the low CF¢pg. for electricity purchased in
California. Because of the fuel mix in this region, purchased electricity is associated with
much less CDE than purchased natural gas. Adding thermal storage does help to reduce
the CDE for a given engine size due to better usage of the fuel energy input to the CHP-
TES system. For example, for the 2.5 kW size, the CHP-TES system produces 3.3% less
CDE than the CHP system. For the 2.5 kW CHP-TES system, the thermal storage
provides an additional 1.7% decrease from the reference case in cost. The most reduction
in cost over the reference case took place with a 5 kW engine size. Smaller and larger
sizes did not reduce cost as effectively, although the cost was reduced for all cases here.

PEC can be reduced only with a very small engine (1.25 kW) used with a CHP-TES
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system. For this case, the CHP-TES system consumes 2.5% less primary energy than the
CHP system, causing a 0.7% decrease in PEC from the reference case. In all other cases
PEC was increased over the reference case. The value for CFpgc . is also significantly

lower in California than for the other locations considered.

Duluth

The relative results for a small office building with varying PGU sizes in Duluth

are presented in Figure 6.5.

N Cost mPEC =CDE

10% -
) & &
O% 7 T T

'&" Y

-10% -

DY,

Variation from reference case

15% -
1.25kW 1.25kW 25kW 2.5kW 5kW  5kW 75kW 7.5kwW
CHP CHP-TS CHP CHP-TS CHP CHP-TS CHP  CHP-TS

Figure 6.5  Variation of cost, PEC, and CDE from reference case for CHP and CHP-
TES with varying PGU size for a small office building in Duluth

For a small office building in Duluth, for most cases cost and PEC increased with

the use of a CHP system. However, the 5 kW size with TES shows improved
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performance over the reference case, decreasing cost, PEC, and CDE. In this case, the
thermal storage provides an additional 3.1%, 3.2%, and 2.6% decrease from the reference
case for cost, PEC, and CDE as compared with CHP with no thermal storage. All engine
sizes studied which were larger than 1.25 kW did cause reduced CDE. Duluth shows
more favorable results with larger PGU sizes because it requires large amounts of heat for
a significant portion of the year. Again, adding thermal storage to the CHP system at a

given size causes less cost, PEC, and CDE than a CHP system without TES.

Supplemental Heat

The effect of TES on the small office building’s requirement for supplemental

heat is shown in Table 6.6.

Table 6.6  Requirement for a supplemental boiler with CHP-TES system for a small

office building
PGU Size Houston San Francisco Duluth
1.25 kW Yes Yes —Reduced  Yes
2.5 kW Yes Yes —Reduced  Yes
SkW Yes No Yes
7.5 kW No No Yes

In Houston, only the 7.5 kW size was able to produce enough heat in order to
eliminate the need for a supplemental boiler when thermal storage is used. However,
given the increases in cost, PEC, and CDE associated with this size at this location, it is
not a feasible option. In San Francisco, the 5 kW and 7 kW sizes produce enough heat in
order to operate the system without a supplemental boiler, but the increases in PEC and
CDE make this an unfavorable choice. The 1.25 and 2.5 kW sizes in San Francisco would

reduce the size of the boiler required to meet the building’s needs. In Duluth, due to the
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cold climate, a supplemental boiler is needed in each case. Overall, the CHP-TES does
not eliminate the need for a boiler at any reasonable operating conditions for a small

office building.

Restaurant
The energy requirements obtained from EnergyPlus for a restaurant building in

each of the three locations are presented in Table 6.7.

Table 6.7  Full service restaurant building energy requirements [88]

Ereq,ave (MJ ) Ereq,min (MJ ) Qreq,ave (MJ ) P HRb

Houston 158.7 56.7 58.2 2.73

San Francisco 130.8 56.9 89.7 1.46

Duluth 131.2 56.5 256.6 0.51
Houston

The relative results for a full service restaurant with varying PGU sizes in

Houston are presented in Figure 6.6.
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Figure 6.6  Variation of cost, PEC, and CDE from reference case for CHP and CHP-
TES with varying PGU size for a full service restaurant in Houston

Although Houston has a higher PHR;, than San Francisco or Duluth, the PHR;, for
the restaurant is much lower than for the office building due to higher thermal demand.
Because of this, results for a restaurant building with CHP are much more favorable than
the results for a small office building with CHP due to the differences in electrical and
thermal demand, as shown by Smith et al. [92]. Cost and PEC are reduced for every case
shown, and CDE is reduced for all cases except for the 30 kW CHP system. As with the
small office building, adding thermal storage does reduce Cost, PEC, and CDE more than
the CHP system without TES. The 20 kW CHP-TES system with thermal storage
provides an additional 1.5%, 1.4%, and 1.5% decrease from the reference case for cost,

PEC, and CDE as compared with CHP with no TES available. The largest reductions in
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Cost and PEC correspond to a PGU size of 20 kW and a CHP-TES system. The most

reduction in CDE occurs when the PGU size is 10 kW with a CHP-TES system.

San Francisco

The relative results for a full service restaurant with varying PGU sizes in San

Francisco are presented in Figure 6.7.
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Figure 6.7  Variation of cost, PEC, and CDE from reference case for CHP and CHP-
TES with varying PGU size for a full service restaurant in San Francisco

As before, the CDE is increased for each case regardless of the PGU size for San
Francisco, due to the low CF¢pg.. The 10 kW engine size with TES shows the least
increase in CDE over the reference case. The most reduction in cost over the reference
case took place with a 30 kW CHP-TES system, while the largest reduction in PEC took

place with a 20 kW CHP-TES system. For the 20 kW CHP-TES system, the thermal
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storage provides an additional 2.4% and 3.4% decrease from the reference case for cost

and PEC as compared with CHP with no thermal storage. The CHP-TES system also

increases CDE over the reference case by 5.0% less than the CHP system. The smaller

PGU sizes did not reduce cost and PEC as effectively, although the increased emissions

for the 5 kW and 10 kW sizes were not as pronounced as for the larger PGU sizes.

Duluth

The relative results for a full service restaurant with varying PGU sizes in Duluth

are presented in Figure 6.8.
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In Duluth, larger engine sizes resulted in decreased cost, PEC, and CDE. Due to

the cold climate and the lower PHR;, resulting from higher relative thermal demand of the
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restaurant building, the extra heat produced by a larger engine becomes useful to the
building. Adding thermal storage at a given engine size continues to improve cost, PEC,
and CDE. While the 5 kW CHP and CHP-TES systems showed unfavorable results, the
30 kW size with TES showed over a 20% reduction in CDE over the reference case,
which is 3.0% less than the reduction in CDE without TES. The 30 kW CHP-TES system
also increased cost and PEC by about 10%, which is an additional decrease of 3.4% and

3.6%, respectively, as compared with CHP without TES.

Supplemental Heat

The effect of TES on the restaurant building’s requirement for supplemental heat

is shown in Table 6.8.

Table 6.8  Requirement for a supplemental boiler with CHP-TES system for a full
service restaurant

PGU Size Houston San Francisco Duluth
5 kW Yes — Reduced Yes Yes
10 kW Yes — Reduced Yes Yes
20 kW Yes — Reduced Yes Yes
30 kW Yes — Reduced Yes —Reduced  Yes

Due to the thermal needs of the restaurant building, the CHP-TES does not
provide enough heat to cover the building’s heat requirement, and a supplemental boiler
will still be required in every case. However, for each size considered in Houston, the
size of the boiler required to meet the restaurant’s thermal energy needs would be smaller
with CHP-TES than with CHP alone. In San Francisco, the 30 kW size would reduce the
required boiler size, but for the smaller sizes the PGU does not produce enough excess

heat to significantly reduce the maximum thermal energy needed from the boiler.
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Hospital

The energy requirements obtained from EnergyPlus for a hospital building in each

of the three locations are presented in Table 6.9.

Table 6.9  Hospital building energy requirements [88]
Ereq,ave (MJ) Ereq,min (MJ) Qreq,ave (MJ) PHRb
Houston 5458 2840 1607 3.40
San Francisco 4636 3270 1887 2.46
Duluth 4417 2025 2302 1.92

Houston

The relative results for a hospital with varying PGU sizes in Houston are

presented in Figure 6.9.
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The systems show highly favorable outcomes in each case for the hospital in
Houston. Cost, PEC, and CDE are significantly reduced for every case shown, with the
700 kW size showing the best results. However, thermal storage provides very little
advantage in this situation because the amount of heat recovered from the CHP system at
each time step is usually larger than the heat required by the building. Therefore, heat
may be stored but is rarely needed in order to meet the thermal energy requirements of
the building. For the 700 kW size, there is not a significant difference between the cost,

PEC, and CDE of the CHP-TES and CHP systems.

San Francisco

The relative results for a hospital with varying PGU sizes in San Francisco are

presented in Figure 6.10.
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Figure 6.10 Variation of Cost, PEC, and CDE from reference case for CHP and CHP-
TES with varying PGU size for a hospital in San Francisco

Again, adding thermal storage to the CHP system with the sizes chosen does not
provide any significant additional benefit, for the same reasons as above. For the San
Francisco location, CDE is increases in each situation, as was shown previously for the
small office and restaurant buildings in San Francisco. For the 200 kW size, the increase
in CDE is small and both cost and PEC are reduced from the reference case. As the PGU
size increases, the cost and PEC become more favorable, but CDE continues to increase
over the reference case. With the 1050 kW size, cost is reduced by over 20%, but PEC
increases slightly and CDE increases dramatically, over 40% more than the reference

case. No highly favorable options exist for the hospital in San Francisco.
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Duluth

The relative results for a hospital with varying PGU sizes in Duluth are presented

in Figure 6.11.
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Thermal energy storage still does not provide an additional benefit. The CHP

system does show favorable results overall in each case, reducing cost, PEC, and CDE.

The 700 kW size shows the largest reduction in cost and PEC, while the 1050 kW size

shows the greatest reduction in CDE.

Supplemental Heat

The effect of TES on the hospital building’s requirement for supplemental heat is

shown in Table 6.10.
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Table 6.10 Requirement for a supplemental boiler with CHP-TS for a hospital

PGU Size Houston San Francisco Duluth

200 kW Yes Yes Yes
350 kW Yes Yes Yes
700 kW No No Yes
1050 kW No No Yes

For the 700 kW and 1050 kW sizes, TES was able to eliminate the need for a
supplemental boiler in Houston and San Francisco. However, a 1050 kW CHP would not
need supplemental heat, either, due to the large amount of heat recovered. Duluth’s cold
climate still requires the building to have a boiler in every case. The options for San
Francisco are still unfavorable due to the increase in PEC. If the 1050 kW size was
chosen for Houston, it would result in excess electricity production of 2.68*10'" kWh, so
without a favorable option to sell electricity back to the grid, the 700 kW size would be
more beneficial. In each case where the supplemental boiler was required, the size
remains the same whether CHP-TES or CHP alone is used.

From the results presented in Figure 6.3 to Figure 6.11, it can be concluded that in
general, the most beneficial size for a CHP application depends on whether the cost,
PEC, or CDE should be optimized. The lowest cost, the lowest PEC, and the lowest CDE
usually correspond to different PGU sizes. However, in many cases all three parameters
were reduced with a given size, indicating an advantage for CHP over the reference
system. It should also be noted that the CHP and CHP-TES systems were assumed to
operate around the clock at constant load. A customized operational strategy could
provide additional cost, PEC, and CDE savings, and might make some of the less

favorable options more attractive.
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Conclusions from varying location and PGU size study

The potential for a CHP-TES to reduce cost, PEC, and emissions was
investigated, and compared with both a CHP system without thermal storage and with the
standard reference case. The addition of a thermal storage option to a CHP system did
reduce the cost, PEC, and CDE over the CHP system alone for a given PGU size, but did
not significantly change the optimum PGU size. For the small office building, a PGU size
relatively small to the building’s electrical demand showed more favorable results in
general, and a CHP-TES system decreased cost, PEC, and CDE from 1% to 3% more
than a CHP system alone. For the full service restaurant building, the decrease in cost,
PEC, and CDE was from 1.5% to 5% more with CHP-TS as compared with CHP. For the
hospital building, CHP-TES was not beneficial compared with CHP for the given
situation, although a larger PGU size showed increasingly favorable results. The cost,
PEC, and CDE were greatly decreased for the hospital with the exception of CDE in San
Francisco. CDE in San Francisco were always shown to be unfavorable due to the low
CF'pgc.. in California, resulting from the relatively low emissions of the electricity
generated for purchase in this region.

The addition of TES generally did not eliminate the need for supplemental heating
in the form of a boiler in order to meet the thermal demand of the building, although in
some situations the size of the boiler may be reduced due to TES. In Duluth, the coldest
climate studied, a boiler was always necessary in order to meet the heating demands of
each building type. The restaurant building, which also has a high thermal demand, will
always require a boiler as well. For the small office building and the hospital, it may be

possible to eliminate the need for a boiler in Houston and San Francisco with a larger
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PGU size. However, in San Francisco, this comes at the cost of greatly increased CDE.
The small office building with CHP-TES in Houston is unfavorable on all three
parameters. The hospital with CHP-TES produces a large amount of excess electricity
with the largest engine size, so only the hospital in Houston with a 750 kW PGU size is
recommended for reducing cost, PEC, and CDE while eliminating the need for a boiler.
Because the cost calculations for both the CHP and CHP-TES systems only
include the cost of purchasing fuel and electricity, capital costs and additional operation
and maintenance costs should be considered before making a financial decision about

whether CHP and CHP-TES systems can reduce cost.

Methodology for Varying Building Type and TES Size Study

This section investigates the benefits of the TES option combined with a CHP
system for eight different commercial building types located in Chicago, IL. Chicago is
located in a cold climate region (between 5,400 and 9,000 heating degree days on a 65°F
basis) [93]. The buildings were modeled using EnergyPlus simulation software [88] and
the same commercial building models developed by the DOE [75]. A CHP system size
that leads to benefits for the building in terms of reducing operational cost, PEC, and
CDE is determined. Then the amount of TES that is beneficial to the particular building is
investigated, along with the effects of the TES option on cost, PEC, CDE, and optimal
boiler size and power generation unit (PGU). This section presents the methodology used
to evaluate the benefits of thermal energy storage in combination with a CHP system for

different commercial building types.
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Chicago Building Models

Eight commercial building types with varying characteristics were selected for the
investigation using building models [75] designed to be representative of typical U.S.
buildings constructed after 1980. More information about these hypothetical buildings is
provided in Table 6.11. The reference building files are provided as input for EnergyPlus
[88] and the building’s performance is simulated. The results of the simulations are used
to provide each building’s hourly demand for electricity and heat over one year. Next, the
operational cost, PEC, and CDE associated with purchasing electricity from the grid and
providing heat with an auxiliary boiler are computed for the reference case, for the CHP

system, and for the CHP system with thermal energy storage (CHP-TES).

Table 6.11 Building model basic characteristics by building type [75]

Building Type Area (m”)  Volume (m’)  Occupancy* (m*/person)

Full Service Restaurant 511 1,558 1.4

Hospital 2,595 88,863 18.6

Large Hotel 11,345 35,185 [1.5 guests/room, 65% occupancy rate]
Outpatient Building 3,804 11,932 4.7

Primary School 6,871 27,484 4

Small Hotel 4,014 13,204 [1.5 guests/room, 65% occupancy rate]
Small Office 511 2,279 18.6

Supermarket 4,181 25,486 11.6

*Qccupancy is provided for the main area or most common type of room for a given building
type. Exact occupancies used in simulation vary with time/location and may be found in the
EnergyPlus input file. See Deru et al. p. 18 for occupancy information.

CHP System Model

The CHP system considered for each building is shown in Figure 6.1. Electricity
is generated by a prime mover, which is again assumed to be a PGU fueled by natural

gas. Electricity in the amount of £, is provided to the building, where E,, 1s given by
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Equation (6.1). The fuel energy used by the PGU in an hour is given by Equation (5.2)
and the heat recovered by the CHP system in an hour is given by Equation (5.3).

The fraction of the thermal demand that is satisfied by the CHP system [58] is

given by:
R —_ Qrec . <
h,CHP — lf Qrec - Qreq 626
Qreq
R, cyp =1 otherwise 6.27

where O, 1s the thermal energy required by the building.
The CHP system is assumed to operate at a constant baseload. This allows the
PGU to operate with a maximum, constant efficiency [54]. Table 6.12 presents the

constant values which are used for the system parameters in the above equations.

Table 6.12 CHP system parameters

Parameter Value
He.pau 0.3

¢ 0.95
Hhrs,chp 0 8

If E,,4, does not meet the building’s electricity requirement, E,.,, then additional
electricity 1s purchased from the grid, E.i4, as give by Equation (6.10). Some of the heat
produced by the PGU is then captured by the heat recovery system (HRS) and thermal
energy, Oy, is available to the building. If the heat produced exceeds O,.,, then excess
heat is produced, Qexcess. If Orec 15 less than Oy, additional heat is provided by a

supplemental boiler, Q sirer-
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Q;mi/er = Qre({ B QV@L’ lf‘ Qrec < Qreq 628

O =0 otherwise 6.29

boiler

CHP-TES System Model

Next, the CHP system is investigated with a thermal storage option as shown in
Figure 6.2. In this situation, when the CHP system produces excess heat, it may be stored
in the TES device until the device reaches its capacity. When the heat produced is
insufficient to meet Q,.,, the stored thermal energy may be used to meet the building’s
energy needs. The boiler is only used if the amount of thermal energy required is greater
than the amount produced by the CHP and the amount stored in the TES device
combined. Equations (6.4) through (6.7) describe the implementation of these conditions.
It is assumed that the TES system does not experience thermal losses and that it can
deliver the thermal energy as needed.

The system is modeled to investigate whether CHP-TES provides additional cost,
PEC, and CDE reductions over the use of a CHP system alone, and whether increasing
the size of the TES device provides additional benefits. Then it is considered whether
CHP-TES can reduce the required boiler size.

The economic analysis is performed as in the Cost section above (from previous
study with varying location and PGU size); the energy analysis is performed as in the
Primary Energy section above; and the emissions analysis is performed as in the Carbon

Dioxide Emissions section above.
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Results from Chicago study

The thermal and electric requirements, Q,., and E,.,, respectively, need to be

known to apply the methodology presented in the previous section. These two parameters

are determined from the results of the EnergyPlus simulation. They will vary from

timestep to timestep and will vary among the different building types. The total yearly

electrical and thermal energy requirements as well as the power-to-heat ratio for each of

the evaluated buildings are presented in Table 6.13.

In addition, the cost of electricity and

natural gas as well as primary energy and emission conversion factors for electricity and

natural gas must to be known. The values used in this investigation are presented in Table

6.14.

Table 6.13  Yearly energy requirements [88] and power-to-heat ratios by building type

Building Type E eq Qreq PHR,
Full Service Restaurant 1,205 GJ 1,512 GJ 0.80
Hospital 42,674 GJ 17,681 GJ 2.41
Large Hotel 16,049 GJ 13,724 GJ 1.17
Outpatient Building 5,708 GJ 4,682 GJ 1.22
Primary School 3,771 GJ 2,873 GJ 1.31
Small Hotel 2,748 GJ 1,160 GJ 2.37
Small Office 312 GJ 138 GJ 2.27
Supermarket 7,295 GJ 4,877 GJ 1.50

Table 6.14 Cost, emissions conversion factors, and primary energy conversion factors

for Chicago
Electricity or Natural Gas Factor Value
Cost, [90] $0.0867/kWh
Cost; [91] $0.028/kWh
ECF [88] 3.546
FCF [88] 1.092
CFcpr,. [88] 0.0007689 ton/kWh
CFcprr[88] 0.0001996 ton/kWh
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PGU Size Selection

In order to investigate the benefits of TES combined with a CHP system, it is
important to determine that the CHP system can potentially benefit the building in terms
of cost, PEC, and CDE. The option to sell or export electricity is not considered in this
investigation. To define the size of the PGU to be used in the analyses, the size of the
PGU was varied from a small size corresponding to half of the minimum hourly
electricity required by the building to a large size which would produce twice the average
hourly electricity required by the building. For every evaluated building, it was found that
a PGU size corresponding to half the average hourly electricity would reduce cost, PEC,
and CDE with respect to the reference case. Therefore, the PGU size was held at 50% of
E.,. in all cases to provide consistency in the comparison among building types. Table
6.15 presents the average hourly electrical demand, the PGU size which provides 50% of
this amount of energy over an hour (average R. = 0.5), and the thermal energy which can

be recovered from this PGU in one hour given the assumed efficiencies in Table 6.12.

Table 6.15 PGU sizing based on average electrical demand of the building

Building Type Eave PGU size Qrec
Full Service Restaurant 138 MJ 19 kW 1213 MJ
Hospital 4871 MJ 675 kW 4309 MJ
Large Hotel 1832 MJ 255 kW 1628 MJ
Outpatient Building 652 MJ 90 kW 575 MJ
Primary School 431 MJ 60 kW 383 MIJ
Small Hotel 314 MJ 44 kW 132 MJ
Small Office 36 MJ SkW 32MJ
Supermarket 833 MJ 115 kW 557 MJ
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TES Capacity and Necessary Boiler Size Analysis

The CHP and CHP-TES systems were simulated using the PGU sizes given in
Table 6.15 which were determined to be potentially beneficial by the previous
calculations. The size of the TES device was varied according to the maximum thermal
energy required by the building in one hour, Q.. The thermal capacity is the only
parameter of interest for the TES study, and therefore the analysis could apply to
different forms of TES. A range of TES sizes from 0.250,4x to O Were simulated, and
the cost, PEC, and CDE were calculated. Table 6.16 presents the storage capacities that
were evaluated. If the storage device was found to provide additional benefits in terms of
cost, PEC, or CDE reduction, each value for 7ES,,, was examined in order to determine
whether it could reduce the size of the boiler needed to satisfy the thermal load of the
building. In other words, because the TES device can provide some of the heating load, if
the maximum thermal energy required from the boiler is reduced due to the addition of
TES, then the boiler size necessary to meet the building’s thermal needs may become

smaller.

Table 6.16 Sizing of thermal store based on maximum thermal demand of the building

Building Type TEScsp = 0.25Qumax TES.sp = 0.50Qumax TES.0p = 0.75Qumax TEScap = Qunax
Full Service Restaurant  52.5 kWh 105 kWh 157.5 kWh 210 kWh
Hospital 172 kWh 344 kWh 516 kWh 688 kWh
Large Hotel 340 kWh 680 kWh 1020 kWh 1360 kWh
Outpatient Building 57 kWh 114 kWh 171 kWh 228 kWh
Primary School 232 kWh 464 kWh 696 kWh 928 kWh
Small Hotel 19 kWh 38 kWh 57 kWh 76 kWh
Small Office 12.5 kWh 25 kWh 37.5 kWh 50 kWh
Supermarket 301 kWh 602 kWh 903 kWh 1204 kWh
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Building Analysis
Full Service Restaurant

Figure 6.12 presents the reductions in cost, PEC, and CDE with respect to the
reference case obtained with a CHP system and CHP-TES systems with varying thermal
storage capacities for the restaurant building. The restaurant has the smallest PHR;, over
the year compared with the other seven buildings studied, with a value of 0.80. This
indicates that more of the energy required by the building is in the form of thermal
energy. For this case, the CHP-TES system does reduce cost, PEC, and CDE more than a
CHP system alone. Therefore, results confirm that it is generally beneficial to have high
relative thermal demand for the operation of the CHP and the CHP-TES systems to be

favorable in terms of cost, PEC, and CDE.
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Figure 6.12 Variation of Cost, PEC, and CDE from reference case for CHP without
TES and CHP-TS with varying TES,,, for a full service restaurant
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The fraction of the thermal load satisfied by the CHP system is, on average,

0.743. As the size of the TES device increases, the reductions on cost, PEC, and CDE

become more favorable. However, once TES,,, 1s about 75% of O,.., the gains resulting

from additional thermal storage capacity are very small, as illustrated in Figure 6.13. This

figure shows the primary energy which is saved by using a CHP-TS system versus the

reference case over a wide range of 7ES.,. Although each building has a unique curve,

and the magnitude of primary energy saved is different for each building, all building

types studied have little or no improvement in energy savings when 7ES,,, is increased

past Opax-
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Figure 6.13 Primary energy savings over the reference case with varying 7ES,,, for a
full service restaurant with CHP and CHP-TES

The fraction of the thermal load satisfied by the CHP system with the TES size

corresponding to 100% of Q. 1s, on average, 0.786. Therefore, the maximum
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improvement shown in R, value from Ry, cyp to Ry, crp.rs 18 5.7%. The R;, values for CHP
and CHP-TES are presented in Figure 6.14. For this case, the required boiler size for each
case remains the same, at 211 kWh, indicating that the maximum hourly thermal load

which must be met by the boiler is not reduced by the addition of TES.

0.9
0.8
0.7
0.6

05 B CHP

04 & CHP-TS
0.3
0.2

0.1

Restaurant  Hospital Large Hotel Qutpatient School  Small Hotel Small Office Supermarket

Figure 6.14 Average R, values for the fraction of required heat provided over one year
by CHP and CHP-TES systems for eight building types

Hospital
Figure 6.15 presents the reductions in cost, PEC, and CDE with respect to the
reference case obtained with a CHP system and CHP-TES systems with varying thermal
storage capacities for the hospital building. The hospital has the largest PHRy, over the
year compared with the other buildings, with a value of 2.41. This indicates that the
building requires more than twice as much electrical energy as thermal energy. Therefore,

CHP-TES has less opportunity to make an impact on the economic, energetic, and
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environmental analysis. Figure 6.15 illustrates that the CHP-TES system does not reduce
cost, PEC, and CDE more than a CHP system alone. The reduction from the reference

case differs by less than 1% between the CHP system and any of the CHP-TES systems.
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Figure 6.15 Variation of Cost, PEC, and CDE from reference case for CHP without
TES and CHP-TS with varying TES,,, for a hospital

The Ry, cup and Ry, cpp.7s values are both 0.998 (Figure 6.14), indicating that the
CHP system alone meets almost all of the building’s thermal load, and adding TES will
not provide additional benefits. The required boiler size for each case also remains the
same, at 687 kWh, indicating that the maximum hourly thermal load which must be met
by the boiler is not reduced by the addition of TES. Therefore, for this type of building

the addition of TES to the CHP system does not add any benefits.
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Large Hotel

Figure 6.16 presents the reductions in cost, PEC, and CDE with respect to the
reference case obtained with a CHP system and CHP-TES systems with varying thermal
storage capacities for the large hotel building. As can be seen in Figure 6.14, the CHP-
TES system does reduce cost, PEC, and CDE more than CHP alone. As the size of the
TES device increases, these reductions become more favorable. Similar to the full service
restaurant, once TES,,, 1s about 75% of Qynay, the gains resulting from additional thermal
storage capacity are very small. The PHRy, of the large hotel is 1.17, larger than that of

the restaurant but much smaller than that of the hospital.
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The Ry, cup and Ry, cyp.rs values are 0.871 and 0.912 (Figure 6.14) representing a

4.7% possible increase in the fraction of thermal load supplied by the CHP system. The
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required boiler size decreases when TES is added to the CHP system, from 1361 kWh to
1329 kWh. The reduction is the same whether TES., 15 0.250x Or equal to Oyay. This 1s
only a 2.4% reduction in the overall size of the boiler required to meet the building’s
thermal energy requirement. However, it illustrates that the CHP-TES system is

functioning as desired, by reducing the peak thermal load required from the boiler.

Outpatient

Figure 6.17 presents the reductions in cost, PEC, and CDE with respect to the
reference case obtained with a CHP system and CHP-TES systems with varying thermal
storage capacities for the outpatient building. The outpatient building has a PHR;, of 1.22,
just larger than the large hotel building, and the CHP-TES system does reduce cost, PEC,
and CDE more than CHP alone. As the size of the TES device increases, these reductions
become more favorable. Again, once TES,, is about 75% of O.ax, the gains resulting

from additional thermal storage capacity are very small.
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Figure 6.17 Variation of Cost, PEC, and CDE from reference case for CHP without
TES and CHP-TES with varying TES,,, for an outpatient building

The Ry, cup and Ry, cup-res values are 0.945 and 0.974 (Figure 6.14) representing a
3.1% possible increase in the fraction of thermal load supplied by the CHP system. The
required boiler size for each case remains the same, at 227 kWh, indicating that the
maximum hourly thermal load which must be met by the boiler is not reduced by the

addition of TES.

Primary School

Figure 6.18 presents the reductions in cost, PEC, and CDE with respect to the
reference case obtained with a CHP system and CHP-TES systems with varying thermal
storage capacities for the primary school building. The primary school building has a
PHRy, of 1.31, just larger than the outpatient building, and Figure 6.18 illustrates that the

CHP-TES system does reduce cost, PEC, and CDE more than CHP alone. As the size of
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the TES device increases, these reductions grow, but the improvement slows somewhat

as TES.,, approaches Q.
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Figure 6.18 Variation of Cost, PEC, and CDE from reference case for CHP without
TES and CHP-TES with varying TES,,, for a primary school

The Ry, cup and Ry, cup-res values are 0.855 and 0.884 (Figure 6.14) representing a
3.5% possible increase in the fraction of thermal load supplied by the CHP system. The
required boiler size for each case remains the same, at 928 kWh, indicating that the
maximum hourly thermal load which must be met by the boiler is not reduced by the

addition of TES.

Small Hotel

Figure 6.19 presents the reductions in cost, PEC, and CDE with respect to the
reference case obtained with a CHP system and CHP-TES systems with varying thermal

storage capacities for the small hotel building. The small hotel has the second largest
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PHRj, after the hospital, with a value of 2.37. Similarly, the CHP-TES system does not
reduce cost, PEC, and CDE more than a CHP system alone. As with the hospital
building, the reduction from the reference case differs by less than 1% between the CHP

system and any of the CHP-TES systems.
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Figure 6.19 Variation of Cost, PEC, and CDE from reference case for CHP without
TES and CHP-TS with varying TES,,, for a small hotel

The Ry, cup and Ry, cyp.rs values are 0.988 and 0.992 (Figure 6.14) representing
only a 0.3% possible increase in the fraction of thermal load supplied by the CHP system.
As with the hospital building, the value for Rj, cxp 1s almost 1 and adding TES will not
provide additional benefits. The required boiler size for each case also remains the same,
at 76 kWh, indicating that the maximum hourly thermal load which must be met by the
boiler is not reduced by the addition of TES. The addition of a TES device is not

beneficial for this particular case.
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Small Office

Figure 6.20 presents the reductions in cost, PEC, and CDE with respect to the
reference case obtained with a CHP system and CHP-TES systems with varying thermal
storage capacities for the small office building. Although the small office has a relatively
large PHR;, of 2.27, the CHP-TES system does reduce cost, PEC, and CDE more than
CHP alone. As the size of the TES device increases, these reductions grow, but the

improvement slows somewhat as TES,, approaches Oy
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Figure 6.20 Variation of Cost, PEC, and CDE from reference case for CHP without
TES and CHP-TES with varying TES,,, for a small office

The Ry, cup and Ry, cup-rs values are 0.922 and 0.950 (Figure 6.14) representing a
3.0% possible increase in the fraction of thermal load supplied by the CHP system. The
required boiler size for each case remains the same, at 51 kWh, indicating that the

maximum hourly thermal load which must be met by the boiler is not reduced by the
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addition of TES. However, because of the variation in the thermal demand of the small
office building, the CHP-TES system often makes supplemental heat from the boiler
unnecessary, even though the size of the boiler required to meet Q,,,, remains the same.
Therefore, even though a much larger portion of the building’s overall energy needs is in
the form of electrical energy, a properly sized CHP-TES system can relieve the thermal

load in such a way as to reduce operational cost, PEC, and CDE.

Supermarket

Figure 6.21 presents the reductions in cost, PEC, and CDE with respect to the
reference case obtained with a CHP system and CHP-TES systems with varying thermal
storage capacities for the supermarket building. The supermarket building has a PHR;, of
1.50, just larger than the primary school building, and the CHP-TES system does reduce
cost, PEC, and CDE more than CHP alone. As the size of the TES device increases, these

reductions grow, but the improvement slows somewhat as TES,,, approaches Q.
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Figure 6.21 Variation of Cost, PEC, and CDE from reference case for CHP without
TES and CHP-TS with varying TES,,, for a supermarket

The Ry, cup and Ry, cup-rs values are 0.863 and 0.900 (Figure 6.14) representing a
4.3% possible increase in the fraction of thermal load supplied by the CHP system. The
required boiler size for each case remains the same, at 1204 kWh, indicating that the
maximum hourly thermal load which must be met by the boiler is not reduced by the

addition of TES.

Discussion of the Chicago study

In general it can be seen that for all the evaluated building the use of a CHP
system reduces the cost, PEC, and CDE. The addition of TES does reduce cost, PEC, and
CDE more than CHP alone for all selected buildings except for the hospital and small
hotel buildings. The results indicate that the building PHR is one of the factors that affect
the potential of TES to provide benefits when combined with a CHP system. The hospital

and the small hotel buildings are the two buildings with the highest PHR among the
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selected buildings that indicates that the building needs more electrical energy than
thermal energy. As previously shown [58], a high R, value is beneficial in terms of
reducing cost, PEC, and CDE, and it was shown that a larger increase from Ry, cyp to

Ry cup-1s indicated greater potential for TES to further reduce cost, PEC, and CDE. Also,
it is important to highlight that for all buildings the CDE is the parameter that benefits

more from the use of CHP-TES system, followed by the PEC and operational cost.

Summary and Conclusions from Chicago study

This chapter presented a methodology to investigate the benefits of a thermal
energy storage option combined with a CHP system. The methodology was applied to
eight different commercial building types located in Chicago, IL.

The results of this study indicate which types of commercial buildings may show
benefits from CHP-TES systems and which types are unlikely to benefit from the
addition of TES. Because any TES device will require additional capital which is not
accounted for in this analysis, it is desirable that the addition of TES should provide
substantial economic benefits in terms of reduced fuel costs, and reduce or eliminate the
requirement for supplemental heating. Cold climates such as that of Chicago are
generally better for CHP due to the increased heating requirements compared with
warmer climates, but adding TES will not always reduce the need for a supplemental
boiler or significantly reduce the operating costs, even if the TES device is large
compared with the building’s maximum heating demand.

For the hospital and small hotel buildings, the addition of TES would not provide

any additional benefits over a properly sized CHP system. These are the buildings with
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the largest PHR;, values, indicating that the building demands much more electrical
energy rather than thermal energy. Therefore, the building rarely needs to use the excess
thermal energy stored in the TES device.

Sizing a TES device to be 75% or more of the maximum hourly thermal
requirement is not recommended. The increased cost associated with such a large device
provides very little return in the form of reducing cost, PEC, and CDE, even without
taking capital costs into consideration. For the six buildings in which TES reduced cost,
PEC, and CDE, these benefits appeared even when the TES device was sized at 25% of
Omar, the smallest thermal capacity size which was modeled here. The appropriate TES.,
for an actual building will be determined based on the capital and maintenance costs
associated with the particular TES system to be installed. If the TES device reduces the
necessary boiler size, this may also be taken into account; however, based on the
buildings studied, a significant reduction in boiler size is unlikely. Because the maximum
thermal load occurs at a time step when the TES device does not have energy stored, the
maximum thermal energy required from the boiler in a one-hour time step cannot be
reduced in most cases.

While thermal storage will provide some benefit in most cases, it is not
recommended that the PGU size is larger for a CHP-TES system than it would be a for a
similar CHP system.

As a general guideline, for the evaluated buildings, when the PHRj, is greater than
2.3, the addition of TES is unlikely to provide any additional benefit when added to a

CHP system. However, the potential benefits from TES will also vary according to how
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the thermal energy requirements of the building change over time. If the thermal load
varies from hour to hour or day to day, TES is more likely to contribute to balancing the
variation in thermal energy requirement.

The assumptions made about the ideal TES device mean that the potential benefits
in terms of reduced cost, PEC, and CDE are the maximum reductions which could be
produced with a perfect TES device; actual devices will be subject to thermal losses and
other limitations on the system. Therefore, if it is determined for a particular building that
the addition of TES may be beneficial, these results may indicate a general storage
capacity range to be considered for the TES device, based on the maximum possible
thermal energy stored in the device relative to the maximum heat load for the building
under consideration. At this point, one or more types of TES devices may be considered
and the performance characteristics of the actual device should be accounted for in the

engineering analysis [64, 68, 94].

Thermal Loss Study with Water Tank TES

CHP systems with thermal storage have been demonstrated to show cost,
emissions, and energy benefits in addition to those of a CHP system in the previous
sections. However, the thermal storage device was assumed to be perfectly insulated. The
thermal losses from thermal storage over time, or the characteristics of an actual TES
device were not considered at all. Here, one situation in which CHP-TES shows potential

benefits is investigated with respect to the necessary tank size and losses from the tank.
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Description

The case of a full service restaurant building in Houston is chosen as described in
the section on the restaurant in Houston. For the range of PGU sizes studied, CHP-TES
showed greater reductions in cost, emissions, and PEC than CHP alone, as shown in
Figure 6.6. Also, the addition of TES reduced the need for a supplemental boiler in this
case.

A sensible hot water TES tank is proposed. Liquid water is a simple and
commonly used substance for heating thermal storage [20]. The large tank which was
considered for this case was assumed to have the capacity to store 220 kWh of thermal
energy. Therefore, the dimensions for the simplified tank model will be chosen such that

it will be able to hold the same amount of thermal energy.

Methodology

The necessary volume of water in the tank is calculated using the volumetric

thermal capacity of water, 4.17 MJ/m’K [64].

Volumetric thermal capacity * V « AT = TES 4, 6.30
where V is volume of water, TEScap is the thermal storage capacity, and AT is the
temperature difference between the fully “charged” state at TEScap and the “discharged”
state at a lower temperature. TEScap is the taken to be 220 kWh, corresponding to the
maximum thermal energy required by the building in one hour as determined from the
results of the EnergyPlus simulation. Here, AT is taken to be 60°C as the thermal storage
will operate between a maximum temperature of 85°C and a low temperature of 25°C.

The maximum temperature is chosen to be well below 100°C in order to avoid the costs
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of pressurizing the tank [20, 64] and the minimum temperature is assumed to be near
room temperature. If the storage tank is located outdoors, the variation in the discharge
temperature must then be accounted for in the analysis. The necessary volume when

Equation (6.30) is solved for V is therefore:

Vieq = 111.8ft> = 3.165m* = 836.2 gal 6.31
For reference, home water heater tanks are typically in the 20-80 gallon range
[95].
A tank model is created with a radius of 2.61 ft and height of 5.22 ft in order to

provide the chosen thermal storage capacity. The tank’s volume is therefore:

Viank = mr2h = 112.1 ft3 6.32
This is similar to the required volume and results in a thermal storage capacity of
220.7 kWh.
The tank is assumed to be insulated. The Department of Energy recommends that
a home water tank be insulated with an R-value of 12 to 25 [95], so for the indoor tank in
this study, an R-value of at least 18 is desired. A commonly available insulation material
is selected, urethane foam, with a low thermal conductivity of k = 0.026 W/(m*K) [96].

Therefore, the necessary thickness of insulation is determined by:

thicknessinsulation

6.33

R-value =

Kinsulation

For a thickness of 3.5 in, R-value = 19.4 ft’R hr/Btu. This meets the design

requirement. The original model of the tank with dimensions is shown in Figure 6.22.
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Figure 6.22 Original basic tank model
For the cylinder containing water, the governing equation is [97]:
1 9T, 19 oT, 2°T,
water - (,r water) water 6‘34
Awater Ot ror ar 0z2

where dyater 18 the thermal diffusivity of liquid water (assumed constant with respect to
temperature), Tyaer 1S temperature within the water, t represents time, r represents radial
distance, and z represents lengthwise distance measured from the center of the cylinder as

shown in Figure 6.22.

Likewise, for the hollow cylinder made up of insulation, the governing equation

1S:

6.35

1 aTinsulation _ 10 6Twater 62Tinsulation
= —-——\7T + >
Xinsulation ot ror ar 0z
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where dinsylation 18 the thermal diffusivity of insulation (assumed constant with respect to
temperature) and Tinsulation T€presents temperature within the insulation later.

For both Equations (6.34) and (6.35), temperature is a function of r, z, and t. The
temperature at the interface must be equal, and the two partial differential equations
would need to be solved simultaneously in order to determine the temperature change
inside the water tank. Additionally, if convection at the surface of the insulation is
considered, this adds complexity to the boundary conditions.

In order to simplify the mathematics, the problem is approximated as one large
cylinder as shown in Figure 6.23. Rather than considering two separate interfaces, one
between the water and insulation, and one between the insulation and surroundings, the

tank is considered to be a lumped system.
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Figure 6.23 Revised simplified tank model

The solution for this problem is known, and may be obtained from the multiplying
the results of the infinite cylinder conduction problem (Figure 6.24a) with the infinite
wall conduction problem (Figure 6.24b) because the desired solution is an intersection of
the two infinite solutions [96]. The infinite cylinder problem considers temperature as a
function of r only, and the infinite wall problem considers temperature as a function of

distance from the center only (here, the z-coordinate).
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It is assumed that convection heat transfer from the insulation to the surrounding
air is not a critical part of the analysis (convection is expected to be minimal for an
indoor tank when compared with an outdoor tank) and the outer edge of the insulation is
taken to be at a constant 25°C. The following additional assumptions were made for this
initial feasibility analysis: volumetric thermal capacity of water does not vary with
temperature; the entire volume of water in the tank is assumed to be an active zone; the
volume of the heat exchanger within the tank is not accounted for; the heat losses near
inlet and exit piping are not accounted for; convection within the tank is ignored; density
of water is assumed to be constant over the given temperature range, which is valid for
subcooled water; and the steel tank wall itself is neglected because the thermal resistance
of steel will be quite low compared with the thermal resistance of the insulation and the

water itself.

151

www.manaraa.com



The solution for the temperature within the tank for the modified model is now

given by:

T(r,z,t) =T.(r,t) *T,(zt) 6.36
where T(r,z,t) represents the temperature in the cylinder based on the r,z coordinates as
shown in Figure 6.23 at a given time; T¢(r,t) represents the solution to the infinite
cylinder problem, which is a function of radius as shown in Figure 6.24, and time; and
Tw(z,t) represents the solution to the infinite wall problem, which is a function of z-
coordinate as shown in Figure 6.24b, and time.

The solutions to these problems are presented as given by Myers [98] as
Equations (6.37) and (6.39) below. The analytical solutions are both comprised of an
infinite series, but for practical reasons only the first six terms of each series were used

for these computations.

_ _ 6 JoAnr)exp (—Apuxt)
T.(r,t) = Toy + 2(Toax — Too) 254 R OR) 6.37

where T, is the ambient temperature, 25°C, Ty 1s the maximum temperature allowable
for the water, 85°C, R is the cylinder radius of 2.9 ft, 4,,R are the roots of the Bessel
function J5(4,R) = 0, and a is an overall volume-weighted average thermal diffusivity

for the cylinder, determined using equation (6.38).

X = ocwater VFwater +°<insulation VFinsulation 6.38
where Owater and insulation are the thermal diffusivities of the two materials, and VF

represents the volume fraction of the whole cylinder that is water versus insulation.
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T(2,t) = Ty + 2(Tnax — Too) Ty o cos (Anz)exp (—A,” & £) 639

where L is one half the total height of the cylinder, 2.9 ft, and A, L = (2n-1)n/2.

The product of the two solutions in Equations (6.37) and (6.39) gives the
temperature of the water at a location in the tank of Figure 4 at a certain time. In order to
examine the time for the “discharge” of thermal energy, the temperature was evaluated at
the center of the cylinder, at =0, z=0, for a conservative estimate. This location would be
the slowest to cool, being as far away as possible from the low-temperature boundary.

Based on the simulation results [99], the maximum storage time necessary for a

restaurant building in Houston was among the longest of the buildings studied, at 30.5

days or 2,635,000 seconds.

Results

In order to present the results in a clear graphical format, the temperatures shown
are nondimensionalized as follows, so that 6 = 1 corresponds to T = Ty, (fully charged)

and 0 = 0 corresponds to T = T, (fully discharged).

T(1,2,t)—Too

0= 6.40

Tmax—Teo
The nondimensional temperature was plotted against the elapsed time in days for
the restaurant as shown in Figure 6.25. This method is not accurate for the first few hours
due to a conflict between the initial condition (T = Ty, at t = 0) and boundary condition
(T =T, for all r = R), so the first half day is not shown in Figure 10. It is noted by Myers

[98] that the series given in Equation (6.39) is slow to converge when the nondimensional
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time given in Equation (6.41), below, is near 0. For t = 30.5 days, the nondimensional

time £ =0.701.
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Figure 6.25 Nondimensional temperature variation with time over a 1 month period

Discussion and Conclusions from Case Study

With regard to small thermal storage times, such as a few hours, the work from
the preceding sections need not be modified to account for thermal losses from an indoor
water tank, as the temperature of water will likely remain the same over this period of
time if the tank is reasonably insulated.

For long thermal storage times, such as the time given for the restaurant case, it is

not reasonable to expect the thermal storage tank to hold its thermal energy over this time
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period. Even a well-insulated tank will likely have lost its heat and reached near-thermal
equilibrium with its surroundings after so many days.

For intermediate times, such as several days or one week, the results are not
considered accurate enough to be conclusive and further study is necessary. The
assumptions made for this work mean that the results are not definitive, and in
questionable situations another approach is warranted. It is desired to obtain a solution to
the original equations developed for the basic model without the lumped approach. It is
difficult to find readily available software which can solve these equations symbolically,
and the finite element method is suggested as an appropriate approach. The convection
boundary condition could also be incorporated into these equations. Weather data,
including temperature variation, could be imported from EnergyPlus [88] for the
appropriate location. For a large outdoor tank, the variation in temperature and even wind
conditions could be used to change the boundary conditions of the tank on a daily or even
hourly basis. The characteristics of the storage tank (such as length, radius, insulation
type and thickness) could be varied in order to find an optimal setup which minimizes
heat loss. If the system is sized for an actual building, a commercially available tank
could be selected and evaluated using the step-by-step method of Hyman [20] along with
proper piping and internal heat exchanger coils, and the internal volume occupied as well
as the thermal losses near the inlets and exits might also be accounted for if a more

accurate solution is needed.
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CHAPTER VII

CONCLUSIONS

CHP systems were analyzed for their potential to reduce costs, emissions, and
PEC in commercial buildings over the standard case where electricity is purchased from
the grid and heat is provided by a boiler. CHAPTER I explained these potential benefits
from CHP systems and their use in the U.S. CHAPTER Il reviewed previous work
addressing these benefits for a CHP system alone and with thermal energy storage.

CHAPTER III investigated the necessary relationship between electricity price
and fuel price for a CHP system to show potential for cost reduction. The necessary cost
ratio and, from the cost ratio, the necessary spark spread were expressed in terms of
system component efficiencies when all of the electricity and heat were consumed by the
building. A method for calculating a simple payback period based on fuel and electricity
costs and system component efficiencies was also presented. Case studies were presented
for three different simulated building types in three different climate locations, where the
minimum spark spread was analyzed for a CHP system operating at constant load without
the assumption that all electricity and heat were useful. It was shown that when the CHP
heat and electricity output is entirely used, increases in electrical or thermal efficiencies
of the PGU produce linear increases in overall system efficiency. When the heat
produced is not entirely used by the building, the sizing of the CHP system (its output

relative to the building demand) affects the minimum spark spread and minimum cost
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ratio, with larger CHP sizes causes larger minimums in order for CHP to show potential
for producing economic benefits.

CHAPTER 1V applied the methods used in CHAPTER III to analyze reductions
in CDE and PEC. An emissions spark spread and a primary energy spark spread were
expressed in terms of component efficiencies. Three case studies were presented for three
simulated buildings in 16 climate locations and the minimum emissions spark spread and
primary energy spark spread were presented for each location. Again, increasing the
thermal recovery efficiency of the CHP system reduced the minimum difference
necessary for CHP to show emissions and energy benefits.

CHAPTER V further investigated the potential for CHP system to reduce
emissions, including carbon dioxide, nitrous oxides, and methane. In order to study
variations among building types, nine models of commercial buildings were simulated in
one location where CHP could potentially reduce emissions. The ideal ratio for heat
produced by the CHP system to heat demanded by the building was presented for
emissions reduction. When the actual ratio approaches this ideal, the CHP system has less
excess heat production, and therefore makes better use of the fuel energy and has the
lowest possible emissions.

Because the percentage of unused heat was proven by Chapters CHAPTER III
through CHAPTER V to be a critical predictor of the potential for CHP to produce
economic, emissions, and energy benefits, CHAPTER VI considered the option of adding
thermal energy storage to a CHP system. TES allows for excess thermal energy to be
stored and retrieved at a later time. The potential for CHP-TES systems to show benefits

beyond those of a CHP system was investigated, first for different locations and

157

www.manaraa.com



differently sized CHP systems, then for different building types and differently sized TES
systems. The TES system was considered to be able to store thermal energy for an
unspecified time without losses. Adding TES for a building with varying thermal demand
could often reduce the need for a supplemental boiler, but could rarely eliminate the need
for one. The assumption of an ideal TES device without thermal losses was investigated
in one case study using a water tank. It was found that thermal losses are not significant
when thermal energy is stored for a number of hours, but the assumption is invalid for a

number of weeks. Over a period of several days to one week, further analysis will be

required.
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